| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( ( A x. 0 ) = 1 -> ( 2 x. ( A x. 0 ) ) = ( 2 x. 1 ) ) |
| 2 |
1
|
adantl |
|- ( ( A e. RR /\ ( A x. 0 ) = 1 ) -> ( 2 x. ( A x. 0 ) ) = ( 2 x. 1 ) ) |
| 3 |
|
2re |
|- 2 e. RR |
| 4 |
|
ax-1rid |
|- ( 2 e. RR -> ( 2 x. 1 ) = 2 ) |
| 5 |
3 4
|
mp1i |
|- ( ( A e. RR /\ ( A x. 0 ) = 1 ) -> ( 2 x. 1 ) = 2 ) |
| 6 |
2 5
|
eqtrd |
|- ( ( A e. RR /\ ( A x. 0 ) = 1 ) -> ( 2 x. ( A x. 0 ) ) = 2 ) |
| 7 |
3
|
a1i |
|- ( ( A e. RR /\ ( A x. 0 ) = 1 ) -> 2 e. RR ) |
| 8 |
|
simpl |
|- ( ( A e. RR /\ ( A x. 0 ) = 1 ) -> A e. RR ) |
| 9 |
|
0red |
|- ( ( A e. RR /\ ( A x. 0 ) = 1 ) -> 0 e. RR ) |
| 10 |
8 9
|
remulcld |
|- ( ( A e. RR /\ ( A x. 0 ) = 1 ) -> ( A x. 0 ) e. RR ) |
| 11 |
7 10
|
remulcld |
|- ( ( A e. RR /\ ( A x. 0 ) = 1 ) -> ( 2 x. ( A x. 0 ) ) e. RR ) |
| 12 |
|
sn-0ne2 |
|- 0 =/= 2 |
| 13 |
12
|
necomi |
|- 2 =/= 0 |
| 14 |
13
|
a1i |
|- ( ( 2 x. ( A x. 0 ) ) = 2 -> 2 =/= 0 ) |
| 15 |
|
eqtr2 |
|- ( ( ( 2 x. ( A x. 0 ) ) = 2 /\ ( 2 x. ( A x. 0 ) ) = 0 ) -> 2 = 0 ) |
| 16 |
14 15
|
mteqand |
|- ( ( 2 x. ( A x. 0 ) ) = 2 -> ( 2 x. ( A x. 0 ) ) =/= 0 ) |
| 17 |
|
ax-rrecex |
|- ( ( ( 2 x. ( A x. 0 ) ) e. RR /\ ( 2 x. ( A x. 0 ) ) =/= 0 ) -> E. x e. RR ( ( 2 x. ( A x. 0 ) ) x. x ) = 1 ) |
| 18 |
11 16 17
|
syl2an |
|- ( ( ( A e. RR /\ ( A x. 0 ) = 1 ) /\ ( 2 x. ( A x. 0 ) ) = 2 ) -> E. x e. RR ( ( 2 x. ( A x. 0 ) ) x. x ) = 1 ) |
| 19 |
|
2cnd |
|- ( ( ( ( A e. RR /\ ( A x. 0 ) = 1 ) /\ ( 2 x. ( A x. 0 ) ) = 2 ) /\ ( x e. RR /\ ( ( 2 x. ( A x. 0 ) ) x. x ) = 1 ) ) -> 2 e. CC ) |
| 20 |
|
simplll |
|- ( ( ( ( A e. RR /\ ( A x. 0 ) = 1 ) /\ ( 2 x. ( A x. 0 ) ) = 2 ) /\ ( x e. RR /\ ( ( 2 x. ( A x. 0 ) ) x. x ) = 1 ) ) -> A e. RR ) |
| 21 |
|
0red |
|- ( ( ( ( A e. RR /\ ( A x. 0 ) = 1 ) /\ ( 2 x. ( A x. 0 ) ) = 2 ) /\ ( x e. RR /\ ( ( 2 x. ( A x. 0 ) ) x. x ) = 1 ) ) -> 0 e. RR ) |
| 22 |
20 21
|
remulcld |
|- ( ( ( ( A e. RR /\ ( A x. 0 ) = 1 ) /\ ( 2 x. ( A x. 0 ) ) = 2 ) /\ ( x e. RR /\ ( ( 2 x. ( A x. 0 ) ) x. x ) = 1 ) ) -> ( A x. 0 ) e. RR ) |
| 23 |
22
|
recnd |
|- ( ( ( ( A e. RR /\ ( A x. 0 ) = 1 ) /\ ( 2 x. ( A x. 0 ) ) = 2 ) /\ ( x e. RR /\ ( ( 2 x. ( A x. 0 ) ) x. x ) = 1 ) ) -> ( A x. 0 ) e. CC ) |
| 24 |
|
simprl |
|- ( ( ( ( A e. RR /\ ( A x. 0 ) = 1 ) /\ ( 2 x. ( A x. 0 ) ) = 2 ) /\ ( x e. RR /\ ( ( 2 x. ( A x. 0 ) ) x. x ) = 1 ) ) -> x e. RR ) |
| 25 |
24
|
recnd |
|- ( ( ( ( A e. RR /\ ( A x. 0 ) = 1 ) /\ ( 2 x. ( A x. 0 ) ) = 2 ) /\ ( x e. RR /\ ( ( 2 x. ( A x. 0 ) ) x. x ) = 1 ) ) -> x e. CC ) |
| 26 |
19 23 25
|
mulassd |
|- ( ( ( ( A e. RR /\ ( A x. 0 ) = 1 ) /\ ( 2 x. ( A x. 0 ) ) = 2 ) /\ ( x e. RR /\ ( ( 2 x. ( A x. 0 ) ) x. x ) = 1 ) ) -> ( ( 2 x. ( A x. 0 ) ) x. x ) = ( 2 x. ( ( A x. 0 ) x. x ) ) ) |
| 27 |
|
simprr |
|- ( ( ( ( A e. RR /\ ( A x. 0 ) = 1 ) /\ ( 2 x. ( A x. 0 ) ) = 2 ) /\ ( x e. RR /\ ( ( 2 x. ( A x. 0 ) ) x. x ) = 1 ) ) -> ( ( 2 x. ( A x. 0 ) ) x. x ) = 1 ) |
| 28 |
20
|
recnd |
|- ( ( ( ( A e. RR /\ ( A x. 0 ) = 1 ) /\ ( 2 x. ( A x. 0 ) ) = 2 ) /\ ( x e. RR /\ ( ( 2 x. ( A x. 0 ) ) x. x ) = 1 ) ) -> A e. CC ) |
| 29 |
|
0cnd |
|- ( ( ( ( A e. RR /\ ( A x. 0 ) = 1 ) /\ ( 2 x. ( A x. 0 ) ) = 2 ) /\ ( x e. RR /\ ( ( 2 x. ( A x. 0 ) ) x. x ) = 1 ) ) -> 0 e. CC ) |
| 30 |
28 29 25
|
mulassd |
|- ( ( ( ( A e. RR /\ ( A x. 0 ) = 1 ) /\ ( 2 x. ( A x. 0 ) ) = 2 ) /\ ( x e. RR /\ ( ( 2 x. ( A x. 0 ) ) x. x ) = 1 ) ) -> ( ( A x. 0 ) x. x ) = ( A x. ( 0 x. x ) ) ) |
| 31 |
|
remul02 |
|- ( x e. RR -> ( 0 x. x ) = 0 ) |
| 32 |
31
|
ad2antrl |
|- ( ( ( ( A e. RR /\ ( A x. 0 ) = 1 ) /\ ( 2 x. ( A x. 0 ) ) = 2 ) /\ ( x e. RR /\ ( ( 2 x. ( A x. 0 ) ) x. x ) = 1 ) ) -> ( 0 x. x ) = 0 ) |
| 33 |
32
|
oveq2d |
|- ( ( ( ( A e. RR /\ ( A x. 0 ) = 1 ) /\ ( 2 x. ( A x. 0 ) ) = 2 ) /\ ( x e. RR /\ ( ( 2 x. ( A x. 0 ) ) x. x ) = 1 ) ) -> ( A x. ( 0 x. x ) ) = ( A x. 0 ) ) |
| 34 |
30 33
|
eqtrd |
|- ( ( ( ( A e. RR /\ ( A x. 0 ) = 1 ) /\ ( 2 x. ( A x. 0 ) ) = 2 ) /\ ( x e. RR /\ ( ( 2 x. ( A x. 0 ) ) x. x ) = 1 ) ) -> ( ( A x. 0 ) x. x ) = ( A x. 0 ) ) |
| 35 |
34
|
oveq2d |
|- ( ( ( ( A e. RR /\ ( A x. 0 ) = 1 ) /\ ( 2 x. ( A x. 0 ) ) = 2 ) /\ ( x e. RR /\ ( ( 2 x. ( A x. 0 ) ) x. x ) = 1 ) ) -> ( 2 x. ( ( A x. 0 ) x. x ) ) = ( 2 x. ( A x. 0 ) ) ) |
| 36 |
26 27 35
|
3eqtr3rd |
|- ( ( ( ( A e. RR /\ ( A x. 0 ) = 1 ) /\ ( 2 x. ( A x. 0 ) ) = 2 ) /\ ( x e. RR /\ ( ( 2 x. ( A x. 0 ) ) x. x ) = 1 ) ) -> ( 2 x. ( A x. 0 ) ) = 1 ) |
| 37 |
18 36
|
rexlimddv |
|- ( ( ( A e. RR /\ ( A x. 0 ) = 1 ) /\ ( 2 x. ( A x. 0 ) ) = 2 ) -> ( 2 x. ( A x. 0 ) ) = 1 ) |
| 38 |
6 37
|
mpdan |
|- ( ( A e. RR /\ ( A x. 0 ) = 1 ) -> ( 2 x. ( A x. 0 ) ) = 1 ) |
| 39 |
|
sn-1ne2 |
|- 1 =/= 2 |
| 40 |
39
|
a1i |
|- ( ( A e. RR /\ ( A x. 0 ) = 1 ) -> 1 =/= 2 ) |
| 41 |
38 40
|
eqnetrd |
|- ( ( A e. RR /\ ( A x. 0 ) = 1 ) -> ( 2 x. ( A x. 0 ) ) =/= 2 ) |
| 42 |
6 41
|
pm2.21ddne |
|- ( ( A e. RR /\ ( A x. 0 ) = 1 ) -> -. ( A x. 0 ) = 1 ) |
| 43 |
42
|
ex |
|- ( A e. RR -> ( ( A x. 0 ) = 1 -> -. ( A x. 0 ) = 1 ) ) |
| 44 |
|
pm2.01 |
|- ( ( ( A x. 0 ) = 1 -> -. ( A x. 0 ) = 1 ) -> -. ( A x. 0 ) = 1 ) |
| 45 |
44
|
neqned |
|- ( ( ( A x. 0 ) = 1 -> -. ( A x. 0 ) = 1 ) -> ( A x. 0 ) =/= 1 ) |
| 46 |
43 45
|
syl |
|- ( A e. RR -> ( A x. 0 ) =/= 1 ) |
| 47 |
|
id |
|- ( A e. RR -> A e. RR ) |
| 48 |
|
elre0re |
|- ( A e. RR -> 0 e. RR ) |
| 49 |
47 48
|
remulcld |
|- ( A e. RR -> ( A x. 0 ) e. RR ) |
| 50 |
|
ax-rrecex |
|- ( ( ( A x. 0 ) e. RR /\ ( A x. 0 ) =/= 0 ) -> E. x e. RR ( ( A x. 0 ) x. x ) = 1 ) |
| 51 |
49 50
|
sylan |
|- ( ( A e. RR /\ ( A x. 0 ) =/= 0 ) -> E. x e. RR ( ( A x. 0 ) x. x ) = 1 ) |
| 52 |
|
simpll |
|- ( ( ( A e. RR /\ ( A x. 0 ) =/= 0 ) /\ ( x e. RR /\ ( ( A x. 0 ) x. x ) = 1 ) ) -> A e. RR ) |
| 53 |
52
|
recnd |
|- ( ( ( A e. RR /\ ( A x. 0 ) =/= 0 ) /\ ( x e. RR /\ ( ( A x. 0 ) x. x ) = 1 ) ) -> A e. CC ) |
| 54 |
|
0cnd |
|- ( ( ( A e. RR /\ ( A x. 0 ) =/= 0 ) /\ ( x e. RR /\ ( ( A x. 0 ) x. x ) = 1 ) ) -> 0 e. CC ) |
| 55 |
|
simprl |
|- ( ( ( A e. RR /\ ( A x. 0 ) =/= 0 ) /\ ( x e. RR /\ ( ( A x. 0 ) x. x ) = 1 ) ) -> x e. RR ) |
| 56 |
55
|
recnd |
|- ( ( ( A e. RR /\ ( A x. 0 ) =/= 0 ) /\ ( x e. RR /\ ( ( A x. 0 ) x. x ) = 1 ) ) -> x e. CC ) |
| 57 |
53 54 56
|
mulassd |
|- ( ( ( A e. RR /\ ( A x. 0 ) =/= 0 ) /\ ( x e. RR /\ ( ( A x. 0 ) x. x ) = 1 ) ) -> ( ( A x. 0 ) x. x ) = ( A x. ( 0 x. x ) ) ) |
| 58 |
|
simprr |
|- ( ( ( A e. RR /\ ( A x. 0 ) =/= 0 ) /\ ( x e. RR /\ ( ( A x. 0 ) x. x ) = 1 ) ) -> ( ( A x. 0 ) x. x ) = 1 ) |
| 59 |
31
|
oveq2d |
|- ( x e. RR -> ( A x. ( 0 x. x ) ) = ( A x. 0 ) ) |
| 60 |
59
|
ad2antrl |
|- ( ( ( A e. RR /\ ( A x. 0 ) =/= 0 ) /\ ( x e. RR /\ ( ( A x. 0 ) x. x ) = 1 ) ) -> ( A x. ( 0 x. x ) ) = ( A x. 0 ) ) |
| 61 |
57 58 60
|
3eqtr3rd |
|- ( ( ( A e. RR /\ ( A x. 0 ) =/= 0 ) /\ ( x e. RR /\ ( ( A x. 0 ) x. x ) = 1 ) ) -> ( A x. 0 ) = 1 ) |
| 62 |
51 61
|
rexlimddv |
|- ( ( A e. RR /\ ( A x. 0 ) =/= 0 ) -> ( A x. 0 ) = 1 ) |
| 63 |
62
|
ex |
|- ( A e. RR -> ( ( A x. 0 ) =/= 0 -> ( A x. 0 ) = 1 ) ) |
| 64 |
63
|
necon1d |
|- ( A e. RR -> ( ( A x. 0 ) =/= 1 -> ( A x. 0 ) = 0 ) ) |
| 65 |
46 64
|
mpd |
|- ( A e. RR -> ( A x. 0 ) = 0 ) |