Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
1
|
adantl |
|
3 |
|
2re |
|
4 |
|
ax-1rid |
|
5 |
3 4
|
mp1i |
|
6 |
2 5
|
eqtrd |
|
7 |
3
|
a1i |
|
8 |
|
simpl |
|
9 |
|
0red |
|
10 |
8 9
|
remulcld |
|
11 |
7 10
|
remulcld |
|
12 |
|
sn-0ne2 |
|
13 |
12
|
necomi |
|
14 |
13
|
a1i |
|
15 |
|
eqtr2 |
|
16 |
14 15
|
mteqand |
|
17 |
|
ax-rrecex |
|
18 |
11 16 17
|
syl2an |
|
19 |
|
2cnd |
|
20 |
|
simplll |
|
21 |
|
0red |
|
22 |
20 21
|
remulcld |
|
23 |
22
|
recnd |
|
24 |
|
simprl |
|
25 |
24
|
recnd |
|
26 |
19 23 25
|
mulassd |
|
27 |
|
simprr |
|
28 |
20
|
recnd |
|
29 |
|
0cnd |
|
30 |
28 29 25
|
mulassd |
|
31 |
|
remul02 |
|
32 |
31
|
ad2antrl |
|
33 |
32
|
oveq2d |
|
34 |
30 33
|
eqtrd |
|
35 |
34
|
oveq2d |
|
36 |
26 27 35
|
3eqtr3rd |
|
37 |
18 36
|
rexlimddv |
|
38 |
6 37
|
mpdan |
|
39 |
|
sn-1ne2 |
|
40 |
39
|
a1i |
|
41 |
38 40
|
eqnetrd |
|
42 |
6 41
|
pm2.21ddne |
|
43 |
42
|
ex |
|
44 |
|
pm2.01 |
|
45 |
44
|
neqned |
|
46 |
43 45
|
syl |
|
47 |
|
id |
|
48 |
|
elre0re |
|
49 |
47 48
|
remulcld |
|
50 |
|
ax-rrecex |
|
51 |
49 50
|
sylan |
|
52 |
|
simpll |
|
53 |
52
|
recnd |
|
54 |
|
0cnd |
|
55 |
|
simprl |
|
56 |
55
|
recnd |
|
57 |
53 54 56
|
mulassd |
|
58 |
|
simprr |
|
59 |
31
|
oveq2d |
|
60 |
59
|
ad2antrl |
|
61 |
57 58 60
|
3eqtr3rd |
|
62 |
51 61
|
rexlimddv |
|
63 |
62
|
ex |
|
64 |
63
|
necon1d |
|
65 |
46 64
|
mpd |
|