Metamath Proof Explorer


Theorem remul02

Description: Real number version of mul02 proven without ax-mulcom . (Contributed by SN, 23-Jan-2024)

Ref Expression
Assertion remul02 A 0 A = 0

Proof

Step Hyp Ref Expression
1 sn-1ne2 1 2
2 elre0re A 0
3 id A A
4 2 3 remulcld A 0 A
5 ax-rrecex 0 A 0 A 0 x 0 A x = 1
6 4 5 sylan A 0 A 0 x 0 A x = 1
7 simprr A 0 A 0 x 0 A x = 1 0 A x = 1
8 df-2 2 = 1 + 1
9 8 oveq1i 2 0 = 1 + 1 0
10 re0m0e0 0 - 0 = 0
11 10 eqcomi 0 = 0 - 0
12 11 oveq2i 1 + 1 0 = 1 + 1 0 - 0
13 1re 1
14 13 13 readdcli 1 + 1
15 sn-00idlem1 1 + 1 1 + 1 0 - 0 = 1 + 1 - 1 + 1
16 14 15 ax-mp 1 + 1 0 - 0 = 1 + 1 - 1 + 1
17 repnpcan 1 1 1 1 + 1 - 1 + 1 = 1 - 1
18 13 13 13 17 mp3an 1 + 1 - 1 + 1 = 1 - 1
19 re1m1e0m0 1 - 1 = 0 - 0
20 18 19 10 3eqtri 1 + 1 - 1 + 1 = 0
21 12 16 20 3eqtri 1 + 1 0 = 0
22 9 21 eqtr2i 0 = 2 0
23 22 oveq1i 0 A = 2 0 A
24 23 oveq1i 0 A x = 2 0 A x
25 24 a1i A 0 A 0 x 0 A x = 1 0 A x = 2 0 A x
26 2cnd A 0 A 0 x 0 A x = 1 2
27 0cnd A 0 A 0 x 0 A x = 1 0
28 simpll A 0 A 0 x 0 A x = 1 A
29 28 recnd A 0 A 0 x 0 A x = 1 A
30 26 27 29 mulassd A 0 A 0 x 0 A x = 1 2 0 A = 2 0 A
31 30 oveq1d A 0 A 0 x 0 A x = 1 2 0 A x = 2 0 A x
32 4 ad2antrr A 0 A 0 x 0 A x = 1 0 A
33 32 recnd A 0 A 0 x 0 A x = 1 0 A
34 simprl A 0 A 0 x 0 A x = 1 x
35 34 recnd A 0 A 0 x 0 A x = 1 x
36 26 33 35 mulassd A 0 A 0 x 0 A x = 1 2 0 A x = 2 0 A x
37 25 31 36 3eqtrd A 0 A 0 x 0 A x = 1 0 A x = 2 0 A x
38 7 oveq2d A 0 A 0 x 0 A x = 1 2 0 A x = 2 1
39 2re 2
40 ax-1rid 2 2 1 = 2
41 39 40 mp1i A 0 A 0 x 0 A x = 1 2 1 = 2
42 37 38 41 3eqtrd A 0 A 0 x 0 A x = 1 0 A x = 2
43 7 42 eqtr3d A 0 A 0 x 0 A x = 1 1 = 2
44 6 43 rexlimddv A 0 A 0 1 = 2
45 44 ex A 0 A 0 1 = 2
46 45 necon1d A 1 2 0 A = 0
47 1 46 mpi A 0 A = 0