| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sn-1ne2 |
|
| 2 |
|
elre0re |
|
| 3 |
|
id |
|
| 4 |
2 3
|
remulcld |
|
| 5 |
|
ax-rrecex |
|
| 6 |
4 5
|
sylan |
|
| 7 |
|
simprr |
|
| 8 |
|
df-2 |
|
| 9 |
8
|
oveq1i |
|
| 10 |
|
re0m0e0 |
|
| 11 |
10
|
eqcomi |
|
| 12 |
11
|
oveq2i |
|
| 13 |
|
1re |
|
| 14 |
13 13
|
readdcli |
|
| 15 |
|
sn-00idlem1 |
|
| 16 |
14 15
|
ax-mp |
|
| 17 |
|
repnpcan |
|
| 18 |
13 13 13 17
|
mp3an |
|
| 19 |
|
re1m1e0m0 |
|
| 20 |
18 19 10
|
3eqtri |
|
| 21 |
12 16 20
|
3eqtri |
|
| 22 |
9 21
|
eqtr2i |
|
| 23 |
22
|
oveq1i |
|
| 24 |
23
|
oveq1i |
|
| 25 |
24
|
a1i |
|
| 26 |
|
2cnd |
|
| 27 |
|
0cnd |
|
| 28 |
|
simpll |
|
| 29 |
28
|
recnd |
|
| 30 |
26 27 29
|
mulassd |
|
| 31 |
30
|
oveq1d |
|
| 32 |
4
|
ad2antrr |
|
| 33 |
32
|
recnd |
|
| 34 |
|
simprl |
|
| 35 |
34
|
recnd |
|
| 36 |
26 33 35
|
mulassd |
|
| 37 |
25 31 36
|
3eqtrd |
|
| 38 |
7
|
oveq2d |
|
| 39 |
|
2re |
|
| 40 |
|
ax-1rid |
|
| 41 |
39 40
|
mp1i |
|
| 42 |
37 38 41
|
3eqtrd |
|
| 43 |
7 42
|
eqtr3d |
|
| 44 |
6 43
|
rexlimddv |
|
| 45 |
44
|
ex |
|
| 46 |
45
|
necon1d |
|
| 47 |
1 46
|
mpi |
|