| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( ( 𝐴 · 0 ) = 1 → ( 2 · ( 𝐴 · 0 ) ) = ( 2 · 1 ) ) |
| 2 |
1
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) = 1 ) → ( 2 · ( 𝐴 · 0 ) ) = ( 2 · 1 ) ) |
| 3 |
|
2re |
⊢ 2 ∈ ℝ |
| 4 |
|
ax-1rid |
⊢ ( 2 ∈ ℝ → ( 2 · 1 ) = 2 ) |
| 5 |
3 4
|
mp1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) = 1 ) → ( 2 · 1 ) = 2 ) |
| 6 |
2 5
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) = 1 ) → ( 2 · ( 𝐴 · 0 ) ) = 2 ) |
| 7 |
3
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) = 1 ) → 2 ∈ ℝ ) |
| 8 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) = 1 ) → 𝐴 ∈ ℝ ) |
| 9 |
|
0red |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) = 1 ) → 0 ∈ ℝ ) |
| 10 |
8 9
|
remulcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) = 1 ) → ( 𝐴 · 0 ) ∈ ℝ ) |
| 11 |
7 10
|
remulcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) = 1 ) → ( 2 · ( 𝐴 · 0 ) ) ∈ ℝ ) |
| 12 |
|
sn-0ne2 |
⊢ 0 ≠ 2 |
| 13 |
12
|
necomi |
⊢ 2 ≠ 0 |
| 14 |
13
|
a1i |
⊢ ( ( 2 · ( 𝐴 · 0 ) ) = 2 → 2 ≠ 0 ) |
| 15 |
|
eqtr2 |
⊢ ( ( ( 2 · ( 𝐴 · 0 ) ) = 2 ∧ ( 2 · ( 𝐴 · 0 ) ) = 0 ) → 2 = 0 ) |
| 16 |
14 15
|
mteqand |
⊢ ( ( 2 · ( 𝐴 · 0 ) ) = 2 → ( 2 · ( 𝐴 · 0 ) ) ≠ 0 ) |
| 17 |
|
ax-rrecex |
⊢ ( ( ( 2 · ( 𝐴 · 0 ) ) ∈ ℝ ∧ ( 2 · ( 𝐴 · 0 ) ) ≠ 0 ) → ∃ 𝑥 ∈ ℝ ( ( 2 · ( 𝐴 · 0 ) ) · 𝑥 ) = 1 ) |
| 18 |
11 16 17
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) = 1 ) ∧ ( 2 · ( 𝐴 · 0 ) ) = 2 ) → ∃ 𝑥 ∈ ℝ ( ( 2 · ( 𝐴 · 0 ) ) · 𝑥 ) = 1 ) |
| 19 |
|
2cnd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) = 1 ) ∧ ( 2 · ( 𝐴 · 0 ) ) = 2 ) ∧ ( 𝑥 ∈ ℝ ∧ ( ( 2 · ( 𝐴 · 0 ) ) · 𝑥 ) = 1 ) ) → 2 ∈ ℂ ) |
| 20 |
|
simplll |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) = 1 ) ∧ ( 2 · ( 𝐴 · 0 ) ) = 2 ) ∧ ( 𝑥 ∈ ℝ ∧ ( ( 2 · ( 𝐴 · 0 ) ) · 𝑥 ) = 1 ) ) → 𝐴 ∈ ℝ ) |
| 21 |
|
0red |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) = 1 ) ∧ ( 2 · ( 𝐴 · 0 ) ) = 2 ) ∧ ( 𝑥 ∈ ℝ ∧ ( ( 2 · ( 𝐴 · 0 ) ) · 𝑥 ) = 1 ) ) → 0 ∈ ℝ ) |
| 22 |
20 21
|
remulcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) = 1 ) ∧ ( 2 · ( 𝐴 · 0 ) ) = 2 ) ∧ ( 𝑥 ∈ ℝ ∧ ( ( 2 · ( 𝐴 · 0 ) ) · 𝑥 ) = 1 ) ) → ( 𝐴 · 0 ) ∈ ℝ ) |
| 23 |
22
|
recnd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) = 1 ) ∧ ( 2 · ( 𝐴 · 0 ) ) = 2 ) ∧ ( 𝑥 ∈ ℝ ∧ ( ( 2 · ( 𝐴 · 0 ) ) · 𝑥 ) = 1 ) ) → ( 𝐴 · 0 ) ∈ ℂ ) |
| 24 |
|
simprl |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) = 1 ) ∧ ( 2 · ( 𝐴 · 0 ) ) = 2 ) ∧ ( 𝑥 ∈ ℝ ∧ ( ( 2 · ( 𝐴 · 0 ) ) · 𝑥 ) = 1 ) ) → 𝑥 ∈ ℝ ) |
| 25 |
24
|
recnd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) = 1 ) ∧ ( 2 · ( 𝐴 · 0 ) ) = 2 ) ∧ ( 𝑥 ∈ ℝ ∧ ( ( 2 · ( 𝐴 · 0 ) ) · 𝑥 ) = 1 ) ) → 𝑥 ∈ ℂ ) |
| 26 |
19 23 25
|
mulassd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) = 1 ) ∧ ( 2 · ( 𝐴 · 0 ) ) = 2 ) ∧ ( 𝑥 ∈ ℝ ∧ ( ( 2 · ( 𝐴 · 0 ) ) · 𝑥 ) = 1 ) ) → ( ( 2 · ( 𝐴 · 0 ) ) · 𝑥 ) = ( 2 · ( ( 𝐴 · 0 ) · 𝑥 ) ) ) |
| 27 |
|
simprr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) = 1 ) ∧ ( 2 · ( 𝐴 · 0 ) ) = 2 ) ∧ ( 𝑥 ∈ ℝ ∧ ( ( 2 · ( 𝐴 · 0 ) ) · 𝑥 ) = 1 ) ) → ( ( 2 · ( 𝐴 · 0 ) ) · 𝑥 ) = 1 ) |
| 28 |
20
|
recnd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) = 1 ) ∧ ( 2 · ( 𝐴 · 0 ) ) = 2 ) ∧ ( 𝑥 ∈ ℝ ∧ ( ( 2 · ( 𝐴 · 0 ) ) · 𝑥 ) = 1 ) ) → 𝐴 ∈ ℂ ) |
| 29 |
|
0cnd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) = 1 ) ∧ ( 2 · ( 𝐴 · 0 ) ) = 2 ) ∧ ( 𝑥 ∈ ℝ ∧ ( ( 2 · ( 𝐴 · 0 ) ) · 𝑥 ) = 1 ) ) → 0 ∈ ℂ ) |
| 30 |
28 29 25
|
mulassd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) = 1 ) ∧ ( 2 · ( 𝐴 · 0 ) ) = 2 ) ∧ ( 𝑥 ∈ ℝ ∧ ( ( 2 · ( 𝐴 · 0 ) ) · 𝑥 ) = 1 ) ) → ( ( 𝐴 · 0 ) · 𝑥 ) = ( 𝐴 · ( 0 · 𝑥 ) ) ) |
| 31 |
|
remul02 |
⊢ ( 𝑥 ∈ ℝ → ( 0 · 𝑥 ) = 0 ) |
| 32 |
31
|
ad2antrl |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) = 1 ) ∧ ( 2 · ( 𝐴 · 0 ) ) = 2 ) ∧ ( 𝑥 ∈ ℝ ∧ ( ( 2 · ( 𝐴 · 0 ) ) · 𝑥 ) = 1 ) ) → ( 0 · 𝑥 ) = 0 ) |
| 33 |
32
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) = 1 ) ∧ ( 2 · ( 𝐴 · 0 ) ) = 2 ) ∧ ( 𝑥 ∈ ℝ ∧ ( ( 2 · ( 𝐴 · 0 ) ) · 𝑥 ) = 1 ) ) → ( 𝐴 · ( 0 · 𝑥 ) ) = ( 𝐴 · 0 ) ) |
| 34 |
30 33
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) = 1 ) ∧ ( 2 · ( 𝐴 · 0 ) ) = 2 ) ∧ ( 𝑥 ∈ ℝ ∧ ( ( 2 · ( 𝐴 · 0 ) ) · 𝑥 ) = 1 ) ) → ( ( 𝐴 · 0 ) · 𝑥 ) = ( 𝐴 · 0 ) ) |
| 35 |
34
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) = 1 ) ∧ ( 2 · ( 𝐴 · 0 ) ) = 2 ) ∧ ( 𝑥 ∈ ℝ ∧ ( ( 2 · ( 𝐴 · 0 ) ) · 𝑥 ) = 1 ) ) → ( 2 · ( ( 𝐴 · 0 ) · 𝑥 ) ) = ( 2 · ( 𝐴 · 0 ) ) ) |
| 36 |
26 27 35
|
3eqtr3rd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) = 1 ) ∧ ( 2 · ( 𝐴 · 0 ) ) = 2 ) ∧ ( 𝑥 ∈ ℝ ∧ ( ( 2 · ( 𝐴 · 0 ) ) · 𝑥 ) = 1 ) ) → ( 2 · ( 𝐴 · 0 ) ) = 1 ) |
| 37 |
18 36
|
rexlimddv |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) = 1 ) ∧ ( 2 · ( 𝐴 · 0 ) ) = 2 ) → ( 2 · ( 𝐴 · 0 ) ) = 1 ) |
| 38 |
6 37
|
mpdan |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) = 1 ) → ( 2 · ( 𝐴 · 0 ) ) = 1 ) |
| 39 |
|
sn-1ne2 |
⊢ 1 ≠ 2 |
| 40 |
39
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) = 1 ) → 1 ≠ 2 ) |
| 41 |
38 40
|
eqnetrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) = 1 ) → ( 2 · ( 𝐴 · 0 ) ) ≠ 2 ) |
| 42 |
6 41
|
pm2.21ddne |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) = 1 ) → ¬ ( 𝐴 · 0 ) = 1 ) |
| 43 |
42
|
ex |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 · 0 ) = 1 → ¬ ( 𝐴 · 0 ) = 1 ) ) |
| 44 |
|
pm2.01 |
⊢ ( ( ( 𝐴 · 0 ) = 1 → ¬ ( 𝐴 · 0 ) = 1 ) → ¬ ( 𝐴 · 0 ) = 1 ) |
| 45 |
44
|
neqned |
⊢ ( ( ( 𝐴 · 0 ) = 1 → ¬ ( 𝐴 · 0 ) = 1 ) → ( 𝐴 · 0 ) ≠ 1 ) |
| 46 |
43 45
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · 0 ) ≠ 1 ) |
| 47 |
|
id |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ ) |
| 48 |
|
elre0re |
⊢ ( 𝐴 ∈ ℝ → 0 ∈ ℝ ) |
| 49 |
47 48
|
remulcld |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · 0 ) ∈ ℝ ) |
| 50 |
|
ax-rrecex |
⊢ ( ( ( 𝐴 · 0 ) ∈ ℝ ∧ ( 𝐴 · 0 ) ≠ 0 ) → ∃ 𝑥 ∈ ℝ ( ( 𝐴 · 0 ) · 𝑥 ) = 1 ) |
| 51 |
49 50
|
sylan |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) ≠ 0 ) → ∃ 𝑥 ∈ ℝ ( ( 𝐴 · 0 ) · 𝑥 ) = 1 ) |
| 52 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) ≠ 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( ( 𝐴 · 0 ) · 𝑥 ) = 1 ) ) → 𝐴 ∈ ℝ ) |
| 53 |
52
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) ≠ 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( ( 𝐴 · 0 ) · 𝑥 ) = 1 ) ) → 𝐴 ∈ ℂ ) |
| 54 |
|
0cnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) ≠ 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( ( 𝐴 · 0 ) · 𝑥 ) = 1 ) ) → 0 ∈ ℂ ) |
| 55 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) ≠ 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( ( 𝐴 · 0 ) · 𝑥 ) = 1 ) ) → 𝑥 ∈ ℝ ) |
| 56 |
55
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) ≠ 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( ( 𝐴 · 0 ) · 𝑥 ) = 1 ) ) → 𝑥 ∈ ℂ ) |
| 57 |
53 54 56
|
mulassd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) ≠ 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( ( 𝐴 · 0 ) · 𝑥 ) = 1 ) ) → ( ( 𝐴 · 0 ) · 𝑥 ) = ( 𝐴 · ( 0 · 𝑥 ) ) ) |
| 58 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) ≠ 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( ( 𝐴 · 0 ) · 𝑥 ) = 1 ) ) → ( ( 𝐴 · 0 ) · 𝑥 ) = 1 ) |
| 59 |
31
|
oveq2d |
⊢ ( 𝑥 ∈ ℝ → ( 𝐴 · ( 0 · 𝑥 ) ) = ( 𝐴 · 0 ) ) |
| 60 |
59
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) ≠ 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( ( 𝐴 · 0 ) · 𝑥 ) = 1 ) ) → ( 𝐴 · ( 0 · 𝑥 ) ) = ( 𝐴 · 0 ) ) |
| 61 |
57 58 60
|
3eqtr3rd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) ≠ 0 ) ∧ ( 𝑥 ∈ ℝ ∧ ( ( 𝐴 · 0 ) · 𝑥 ) = 1 ) ) → ( 𝐴 · 0 ) = 1 ) |
| 62 |
51 61
|
rexlimddv |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 0 ) ≠ 0 ) → ( 𝐴 · 0 ) = 1 ) |
| 63 |
62
|
ex |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 · 0 ) ≠ 0 → ( 𝐴 · 0 ) = 1 ) ) |
| 64 |
63
|
necon1d |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 · 0 ) ≠ 1 → ( 𝐴 · 0 ) = 0 ) ) |
| 65 |
46 64
|
mpd |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · 0 ) = 0 ) |