Metamath Proof Explorer


Theorem sn-0ne2

Description: 0ne2 without ax-mulcom . (Contributed by SN, 23-Jan-2024)

Ref Expression
Assertion sn-0ne2 0 ≠ 2

Proof

Step Hyp Ref Expression
1 1re 1 ∈ ℝ
2 readdid2 ( 1 ∈ ℝ → ( 0 + 1 ) = 1 )
3 1 2 ax-mp ( 0 + 1 ) = 1
4 sn-1ne2 1 ≠ 2
5 2re 2 ∈ ℝ
6 1 5 lttri2i ( 1 ≠ 2 ↔ ( 1 < 2 ∨ 2 < 1 ) )
7 4 6 mpbi ( 1 < 2 ∨ 2 < 1 )
8 1red ( 1 < 2 → 1 ∈ ℝ )
9 1 5 1 ltadd2i ( 1 < 2 ↔ ( 1 + 1 ) < ( 1 + 2 ) )
10 9 biimpi ( 1 < 2 → ( 1 + 1 ) < ( 1 + 2 ) )
11 1p1e2 ( 1 + 1 ) = 2
12 1p2e3 ( 1 + 2 ) = 3
13 10 11 12 3brtr3g ( 1 < 2 → 2 < 3 )
14 3re 3 ∈ ℝ
15 1 5 14 lttri ( ( 1 < 2 ∧ 2 < 3 ) → 1 < 3 )
16 13 15 mpdan ( 1 < 2 → 1 < 3 )
17 8 16 ltned ( 1 < 2 → 1 ≠ 3 )
18 14 a1i ( 2 < 1 → 3 ∈ ℝ )
19 5 1 1 ltadd2i ( 2 < 1 ↔ ( 1 + 2 ) < ( 1 + 1 ) )
20 19 biimpi ( 2 < 1 → ( 1 + 2 ) < ( 1 + 1 ) )
21 20 12 11 3brtr3g ( 2 < 1 → 3 < 2 )
22 14 5 1 lttri ( ( 3 < 2 ∧ 2 < 1 ) → 3 < 1 )
23 21 22 mpancom ( 2 < 1 → 3 < 1 )
24 18 23 gtned ( 2 < 1 → 1 ≠ 3 )
25 17 24 jaoi ( ( 1 < 2 ∨ 2 < 1 ) → 1 ≠ 3 )
26 7 25 ax-mp 1 ≠ 3
27 df-3 3 = ( 2 + 1 )
28 26 27 neeqtri 1 ≠ ( 2 + 1 )
29 3 28 eqnetri ( 0 + 1 ) ≠ ( 2 + 1 )
30 oveq1 ( 0 = 2 → ( 0 + 1 ) = ( 2 + 1 ) )
31 30 necon3i ( ( 0 + 1 ) ≠ ( 2 + 1 ) → 0 ≠ 2 )
32 29 31 ax-mp 0 ≠ 2