Description: 0ne2 without ax-mulcom . (Contributed by SN, 23-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | sn-0ne2 | ⊢ 0 ≠ 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re | ⊢ 1 ∈ ℝ | |
2 | readdid2 | ⊢ ( 1 ∈ ℝ → ( 0 + 1 ) = 1 ) | |
3 | 1 2 | ax-mp | ⊢ ( 0 + 1 ) = 1 |
4 | sn-1ne2 | ⊢ 1 ≠ 2 | |
5 | 2re | ⊢ 2 ∈ ℝ | |
6 | 1 5 | lttri2i | ⊢ ( 1 ≠ 2 ↔ ( 1 < 2 ∨ 2 < 1 ) ) |
7 | 4 6 | mpbi | ⊢ ( 1 < 2 ∨ 2 < 1 ) |
8 | 1red | ⊢ ( 1 < 2 → 1 ∈ ℝ ) | |
9 | 1 5 1 | ltadd2i | ⊢ ( 1 < 2 ↔ ( 1 + 1 ) < ( 1 + 2 ) ) |
10 | 9 | biimpi | ⊢ ( 1 < 2 → ( 1 + 1 ) < ( 1 + 2 ) ) |
11 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
12 | 1p2e3 | ⊢ ( 1 + 2 ) = 3 | |
13 | 10 11 12 | 3brtr3g | ⊢ ( 1 < 2 → 2 < 3 ) |
14 | 3re | ⊢ 3 ∈ ℝ | |
15 | 1 5 14 | lttri | ⊢ ( ( 1 < 2 ∧ 2 < 3 ) → 1 < 3 ) |
16 | 13 15 | mpdan | ⊢ ( 1 < 2 → 1 < 3 ) |
17 | 8 16 | ltned | ⊢ ( 1 < 2 → 1 ≠ 3 ) |
18 | 14 | a1i | ⊢ ( 2 < 1 → 3 ∈ ℝ ) |
19 | 5 1 1 | ltadd2i | ⊢ ( 2 < 1 ↔ ( 1 + 2 ) < ( 1 + 1 ) ) |
20 | 19 | biimpi | ⊢ ( 2 < 1 → ( 1 + 2 ) < ( 1 + 1 ) ) |
21 | 20 12 11 | 3brtr3g | ⊢ ( 2 < 1 → 3 < 2 ) |
22 | 14 5 1 | lttri | ⊢ ( ( 3 < 2 ∧ 2 < 1 ) → 3 < 1 ) |
23 | 21 22 | mpancom | ⊢ ( 2 < 1 → 3 < 1 ) |
24 | 18 23 | gtned | ⊢ ( 2 < 1 → 1 ≠ 3 ) |
25 | 17 24 | jaoi | ⊢ ( ( 1 < 2 ∨ 2 < 1 ) → 1 ≠ 3 ) |
26 | 7 25 | ax-mp | ⊢ 1 ≠ 3 |
27 | df-3 | ⊢ 3 = ( 2 + 1 ) | |
28 | 26 27 | neeqtri | ⊢ 1 ≠ ( 2 + 1 ) |
29 | 3 28 | eqnetri | ⊢ ( 0 + 1 ) ≠ ( 2 + 1 ) |
30 | oveq1 | ⊢ ( 0 = 2 → ( 0 + 1 ) = ( 2 + 1 ) ) | |
31 | 30 | necon3i | ⊢ ( ( 0 + 1 ) ≠ ( 2 + 1 ) → 0 ≠ 2 ) |
32 | 29 31 | ax-mp | ⊢ 0 ≠ 2 |