Description: Subtraction of a real number from itself (compare subid ). (Contributed by SN, 23-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resubid | |- ( A e. RR -> ( A -R A ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | re0m0e0 | |- ( 0 -R 0 ) = 0 |
|
| 2 | 1 | oveq2i | |- ( A x. ( 0 -R 0 ) ) = ( A x. 0 ) |
| 3 | sn-00idlem1 | |- ( A e. RR -> ( A x. ( 0 -R 0 ) ) = ( A -R A ) ) |
|
| 4 | remul01 | |- ( A e. RR -> ( A x. 0 ) = 0 ) |
|
| 5 | 2 3 4 | 3eqtr3a | |- ( A e. RR -> ( A -R A ) = 0 ) |