Metamath Proof Explorer


Theorem remulneg2d

Description: Product with negative is negative of product. (Contributed by SN, 25-Jan-2025)

Ref Expression
Hypotheses remulneg2d.a φA
remulneg2d.b φB
Assertion remulneg2d φA0-B=0-AB

Proof

Step Hyp Ref Expression
1 remulneg2d.a φA
2 remulneg2d.b φB
3 0red φ0
4 resubdi A0BA0-B=A0-AB
5 1 3 2 4 syl3anc φA0-B=A0-AB
6 remul01 AA0=0
7 1 6 syl φA0=0
8 7 oveq1d φA0-AB=0-AB
9 5 8 eqtrd φA0-B=0-AB