Description: Proof of cnegex2 without ax-mulcom . (Contributed by SN, 5-May-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | sn-negex2 | |- ( A e. CC -> E. b e. CC ( b + A ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sn-negex12 | |- ( A e. CC -> E. b e. CC ( ( A + b ) = 0 /\ ( b + A ) = 0 ) ) |
|
2 | simpr | |- ( ( ( A + b ) = 0 /\ ( b + A ) = 0 ) -> ( b + A ) = 0 ) |
|
3 | 2 | reximi | |- ( E. b e. CC ( ( A + b ) = 0 /\ ( b + A ) = 0 ) -> E. b e. CC ( b + A ) = 0 ) |
4 | 1 3 | syl | |- ( A e. CC -> E. b e. CC ( b + A ) = 0 ) |