| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnre |
|- ( A e. CC -> E. x e. RR E. y e. RR A = ( x + ( _i x. y ) ) ) |
| 2 |
|
oveq2 |
|- ( b = ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) -> ( ( x + ( _i x. y ) ) + b ) = ( ( x + ( _i x. y ) ) + ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) ) ) |
| 3 |
2
|
eqeq1d |
|- ( b = ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) -> ( ( ( x + ( _i x. y ) ) + b ) = 0 <-> ( ( x + ( _i x. y ) ) + ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) ) = 0 ) ) |
| 4 |
|
oveq1 |
|- ( b = ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) -> ( b + ( x + ( _i x. y ) ) ) = ( ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) + ( x + ( _i x. y ) ) ) ) |
| 5 |
4
|
eqeq1d |
|- ( b = ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) -> ( ( b + ( x + ( _i x. y ) ) ) = 0 <-> ( ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) + ( x + ( _i x. y ) ) ) = 0 ) ) |
| 6 |
3 5
|
anbi12d |
|- ( b = ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) -> ( ( ( ( x + ( _i x. y ) ) + b ) = 0 /\ ( b + ( x + ( _i x. y ) ) ) = 0 ) <-> ( ( ( x + ( _i x. y ) ) + ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) ) = 0 /\ ( ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) + ( x + ( _i x. y ) ) ) = 0 ) ) ) |
| 7 |
|
ax-icn |
|- _i e. CC |
| 8 |
7
|
a1i |
|- ( y e. RR -> _i e. CC ) |
| 9 |
|
rernegcl |
|- ( y e. RR -> ( 0 -R y ) e. RR ) |
| 10 |
9
|
recnd |
|- ( y e. RR -> ( 0 -R y ) e. CC ) |
| 11 |
8 10
|
mulcld |
|- ( y e. RR -> ( _i x. ( 0 -R y ) ) e. CC ) |
| 12 |
11
|
adantl |
|- ( ( x e. RR /\ y e. RR ) -> ( _i x. ( 0 -R y ) ) e. CC ) |
| 13 |
|
rernegcl |
|- ( x e. RR -> ( 0 -R x ) e. RR ) |
| 14 |
13
|
recnd |
|- ( x e. RR -> ( 0 -R x ) e. CC ) |
| 15 |
14
|
adantr |
|- ( ( x e. RR /\ y e. RR ) -> ( 0 -R x ) e. CC ) |
| 16 |
12 15
|
addcld |
|- ( ( x e. RR /\ y e. RR ) -> ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) e. CC ) |
| 17 |
|
recn |
|- ( x e. RR -> x e. CC ) |
| 18 |
17
|
adantr |
|- ( ( x e. RR /\ y e. RR ) -> x e. CC ) |
| 19 |
|
recn |
|- ( y e. RR -> y e. CC ) |
| 20 |
8 19
|
mulcld |
|- ( y e. RR -> ( _i x. y ) e. CC ) |
| 21 |
20
|
adantl |
|- ( ( x e. RR /\ y e. RR ) -> ( _i x. y ) e. CC ) |
| 22 |
18 21 12
|
addassd |
|- ( ( x e. RR /\ y e. RR ) -> ( ( x + ( _i x. y ) ) + ( _i x. ( 0 -R y ) ) ) = ( x + ( ( _i x. y ) + ( _i x. ( 0 -R y ) ) ) ) ) |
| 23 |
8 19 10
|
adddid |
|- ( y e. RR -> ( _i x. ( y + ( 0 -R y ) ) ) = ( ( _i x. y ) + ( _i x. ( 0 -R y ) ) ) ) |
| 24 |
|
renegid |
|- ( y e. RR -> ( y + ( 0 -R y ) ) = 0 ) |
| 25 |
24
|
oveq2d |
|- ( y e. RR -> ( _i x. ( y + ( 0 -R y ) ) ) = ( _i x. 0 ) ) |
| 26 |
|
sn-it0e0 |
|- ( _i x. 0 ) = 0 |
| 27 |
25 26
|
eqtrdi |
|- ( y e. RR -> ( _i x. ( y + ( 0 -R y ) ) ) = 0 ) |
| 28 |
23 27
|
eqtr3d |
|- ( y e. RR -> ( ( _i x. y ) + ( _i x. ( 0 -R y ) ) ) = 0 ) |
| 29 |
28
|
adantl |
|- ( ( x e. RR /\ y e. RR ) -> ( ( _i x. y ) + ( _i x. ( 0 -R y ) ) ) = 0 ) |
| 30 |
29
|
oveq2d |
|- ( ( x e. RR /\ y e. RR ) -> ( x + ( ( _i x. y ) + ( _i x. ( 0 -R y ) ) ) ) = ( x + 0 ) ) |
| 31 |
|
readdrid |
|- ( x e. RR -> ( x + 0 ) = x ) |
| 32 |
31
|
adantr |
|- ( ( x e. RR /\ y e. RR ) -> ( x + 0 ) = x ) |
| 33 |
22 30 32
|
3eqtrd |
|- ( ( x e. RR /\ y e. RR ) -> ( ( x + ( _i x. y ) ) + ( _i x. ( 0 -R y ) ) ) = x ) |
| 34 |
33
|
oveq1d |
|- ( ( x e. RR /\ y e. RR ) -> ( ( ( x + ( _i x. y ) ) + ( _i x. ( 0 -R y ) ) ) + ( 0 -R x ) ) = ( x + ( 0 -R x ) ) ) |
| 35 |
18 21
|
addcld |
|- ( ( x e. RR /\ y e. RR ) -> ( x + ( _i x. y ) ) e. CC ) |
| 36 |
35 12 15
|
addassd |
|- ( ( x e. RR /\ y e. RR ) -> ( ( ( x + ( _i x. y ) ) + ( _i x. ( 0 -R y ) ) ) + ( 0 -R x ) ) = ( ( x + ( _i x. y ) ) + ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) ) ) |
| 37 |
|
renegid |
|- ( x e. RR -> ( x + ( 0 -R x ) ) = 0 ) |
| 38 |
37
|
adantr |
|- ( ( x e. RR /\ y e. RR ) -> ( x + ( 0 -R x ) ) = 0 ) |
| 39 |
34 36 38
|
3eqtr3d |
|- ( ( x e. RR /\ y e. RR ) -> ( ( x + ( _i x. y ) ) + ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) ) = 0 ) |
| 40 |
12 15 35
|
addassd |
|- ( ( x e. RR /\ y e. RR ) -> ( ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) + ( x + ( _i x. y ) ) ) = ( ( _i x. ( 0 -R y ) ) + ( ( 0 -R x ) + ( x + ( _i x. y ) ) ) ) ) |
| 41 |
|
renegid2 |
|- ( x e. RR -> ( ( 0 -R x ) + x ) = 0 ) |
| 42 |
41
|
adantr |
|- ( ( x e. RR /\ y e. RR ) -> ( ( 0 -R x ) + x ) = 0 ) |
| 43 |
42
|
oveq1d |
|- ( ( x e. RR /\ y e. RR ) -> ( ( ( 0 -R x ) + x ) + ( _i x. y ) ) = ( 0 + ( _i x. y ) ) ) |
| 44 |
15 18 21
|
addassd |
|- ( ( x e. RR /\ y e. RR ) -> ( ( ( 0 -R x ) + x ) + ( _i x. y ) ) = ( ( 0 -R x ) + ( x + ( _i x. y ) ) ) ) |
| 45 |
|
sn-addlid |
|- ( ( _i x. y ) e. CC -> ( 0 + ( _i x. y ) ) = ( _i x. y ) ) |
| 46 |
21 45
|
syl |
|- ( ( x e. RR /\ y e. RR ) -> ( 0 + ( _i x. y ) ) = ( _i x. y ) ) |
| 47 |
43 44 46
|
3eqtr3rd |
|- ( ( x e. RR /\ y e. RR ) -> ( _i x. y ) = ( ( 0 -R x ) + ( x + ( _i x. y ) ) ) ) |
| 48 |
47
|
oveq2d |
|- ( ( x e. RR /\ y e. RR ) -> ( ( _i x. ( 0 -R y ) ) + ( _i x. y ) ) = ( ( _i x. ( 0 -R y ) ) + ( ( 0 -R x ) + ( x + ( _i x. y ) ) ) ) ) |
| 49 |
8 10 19
|
adddid |
|- ( y e. RR -> ( _i x. ( ( 0 -R y ) + y ) ) = ( ( _i x. ( 0 -R y ) ) + ( _i x. y ) ) ) |
| 50 |
|
renegid2 |
|- ( y e. RR -> ( ( 0 -R y ) + y ) = 0 ) |
| 51 |
50
|
oveq2d |
|- ( y e. RR -> ( _i x. ( ( 0 -R y ) + y ) ) = ( _i x. 0 ) ) |
| 52 |
51 26
|
eqtrdi |
|- ( y e. RR -> ( _i x. ( ( 0 -R y ) + y ) ) = 0 ) |
| 53 |
49 52
|
eqtr3d |
|- ( y e. RR -> ( ( _i x. ( 0 -R y ) ) + ( _i x. y ) ) = 0 ) |
| 54 |
53
|
adantl |
|- ( ( x e. RR /\ y e. RR ) -> ( ( _i x. ( 0 -R y ) ) + ( _i x. y ) ) = 0 ) |
| 55 |
40 48 54
|
3eqtr2d |
|- ( ( x e. RR /\ y e. RR ) -> ( ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) + ( x + ( _i x. y ) ) ) = 0 ) |
| 56 |
39 55
|
jca |
|- ( ( x e. RR /\ y e. RR ) -> ( ( ( x + ( _i x. y ) ) + ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) ) = 0 /\ ( ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) + ( x + ( _i x. y ) ) ) = 0 ) ) |
| 57 |
6 16 56
|
rspcedvdw |
|- ( ( x e. RR /\ y e. RR ) -> E. b e. CC ( ( ( x + ( _i x. y ) ) + b ) = 0 /\ ( b + ( x + ( _i x. y ) ) ) = 0 ) ) |
| 58 |
57
|
adantl |
|- ( ( A e. CC /\ ( x e. RR /\ y e. RR ) ) -> E. b e. CC ( ( ( x + ( _i x. y ) ) + b ) = 0 /\ ( b + ( x + ( _i x. y ) ) ) = 0 ) ) |
| 59 |
|
oveq1 |
|- ( A = ( x + ( _i x. y ) ) -> ( A + b ) = ( ( x + ( _i x. y ) ) + b ) ) |
| 60 |
59
|
eqeq1d |
|- ( A = ( x + ( _i x. y ) ) -> ( ( A + b ) = 0 <-> ( ( x + ( _i x. y ) ) + b ) = 0 ) ) |
| 61 |
|
oveq2 |
|- ( A = ( x + ( _i x. y ) ) -> ( b + A ) = ( b + ( x + ( _i x. y ) ) ) ) |
| 62 |
61
|
eqeq1d |
|- ( A = ( x + ( _i x. y ) ) -> ( ( b + A ) = 0 <-> ( b + ( x + ( _i x. y ) ) ) = 0 ) ) |
| 63 |
60 62
|
anbi12d |
|- ( A = ( x + ( _i x. y ) ) -> ( ( ( A + b ) = 0 /\ ( b + A ) = 0 ) <-> ( ( ( x + ( _i x. y ) ) + b ) = 0 /\ ( b + ( x + ( _i x. y ) ) ) = 0 ) ) ) |
| 64 |
63
|
rexbidv |
|- ( A = ( x + ( _i x. y ) ) -> ( E. b e. CC ( ( A + b ) = 0 /\ ( b + A ) = 0 ) <-> E. b e. CC ( ( ( x + ( _i x. y ) ) + b ) = 0 /\ ( b + ( x + ( _i x. y ) ) ) = 0 ) ) ) |
| 65 |
58 64
|
syl5ibrcom |
|- ( ( A e. CC /\ ( x e. RR /\ y e. RR ) ) -> ( A = ( x + ( _i x. y ) ) -> E. b e. CC ( ( A + b ) = 0 /\ ( b + A ) = 0 ) ) ) |
| 66 |
65
|
rexlimdvva |
|- ( A e. CC -> ( E. x e. RR E. y e. RR A = ( x + ( _i x. y ) ) -> E. b e. CC ( ( A + b ) = 0 /\ ( b + A ) = 0 ) ) ) |
| 67 |
1 66
|
mpd |
|- ( A e. CC -> E. b e. CC ( ( A + b ) = 0 /\ ( b + A ) = 0 ) ) |