Step |
Hyp |
Ref |
Expression |
1 |
|
ax-icn |
|- _i e. CC |
2 |
1
|
a1i |
|- ( y e. RR -> _i e. CC ) |
3 |
|
rernegcl |
|- ( y e. RR -> ( 0 -R y ) e. RR ) |
4 |
3
|
recnd |
|- ( y e. RR -> ( 0 -R y ) e. CC ) |
5 |
2 4
|
mulcld |
|- ( y e. RR -> ( _i x. ( 0 -R y ) ) e. CC ) |
6 |
5
|
adantl |
|- ( ( x e. RR /\ y e. RR ) -> ( _i x. ( 0 -R y ) ) e. CC ) |
7 |
|
rernegcl |
|- ( x e. RR -> ( 0 -R x ) e. RR ) |
8 |
7
|
recnd |
|- ( x e. RR -> ( 0 -R x ) e. CC ) |
9 |
8
|
adantr |
|- ( ( x e. RR /\ y e. RR ) -> ( 0 -R x ) e. CC ) |
10 |
6 9
|
addcld |
|- ( ( x e. RR /\ y e. RR ) -> ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) e. CC ) |
11 |
10
|
adantl |
|- ( ( A e. CC /\ ( x e. RR /\ y e. RR ) ) -> ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) e. CC ) |
12 |
|
eqeq1 |
|- ( b = ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) -> ( b = ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) <-> ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) = ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) ) ) |
13 |
12
|
adantl |
|- ( ( ( A e. CC /\ ( x e. RR /\ y e. RR ) ) /\ b = ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) ) -> ( b = ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) <-> ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) = ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) ) ) |
14 |
|
eqidd |
|- ( ( A e. CC /\ ( x e. RR /\ y e. RR ) ) -> ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) = ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) ) |
15 |
11 13 14
|
rspcedvd |
|- ( ( A e. CC /\ ( x e. RR /\ y e. RR ) ) -> E. b e. CC b = ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) ) |
16 |
15
|
ralrimivva |
|- ( A e. CC -> A. x e. RR A. y e. RR E. b e. CC b = ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) ) |
17 |
|
cnre |
|- ( A e. CC -> E. x e. RR E. y e. RR A = ( x + ( _i x. y ) ) ) |
18 |
16 17
|
r19.29d2r |
|- ( A e. CC -> E. x e. RR E. y e. RR ( E. b e. CC b = ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) /\ A = ( x + ( _i x. y ) ) ) ) |
19 |
|
oveq1 |
|- ( A = ( x + ( _i x. y ) ) -> ( A + ( _i x. ( 0 -R y ) ) ) = ( ( x + ( _i x. y ) ) + ( _i x. ( 0 -R y ) ) ) ) |
20 |
19
|
adantl |
|- ( ( ( A e. CC /\ ( x e. RR /\ y e. RR ) ) /\ A = ( x + ( _i x. y ) ) ) -> ( A + ( _i x. ( 0 -R y ) ) ) = ( ( x + ( _i x. y ) ) + ( _i x. ( 0 -R y ) ) ) ) |
21 |
|
recn |
|- ( x e. RR -> x e. CC ) |
22 |
21
|
adantr |
|- ( ( x e. RR /\ y e. RR ) -> x e. CC ) |
23 |
1
|
a1i |
|- ( ( x e. RR /\ y e. RR ) -> _i e. CC ) |
24 |
|
recn |
|- ( y e. RR -> y e. CC ) |
25 |
24
|
adantl |
|- ( ( x e. RR /\ y e. RR ) -> y e. CC ) |
26 |
23 25
|
mulcld |
|- ( ( x e. RR /\ y e. RR ) -> ( _i x. y ) e. CC ) |
27 |
22 26 6
|
addassd |
|- ( ( x e. RR /\ y e. RR ) -> ( ( x + ( _i x. y ) ) + ( _i x. ( 0 -R y ) ) ) = ( x + ( ( _i x. y ) + ( _i x. ( 0 -R y ) ) ) ) ) |
28 |
|
renegid |
|- ( y e. RR -> ( y + ( 0 -R y ) ) = 0 ) |
29 |
28
|
oveq2d |
|- ( y e. RR -> ( _i x. ( y + ( 0 -R y ) ) ) = ( _i x. 0 ) ) |
30 |
2 24 4
|
adddid |
|- ( y e. RR -> ( _i x. ( y + ( 0 -R y ) ) ) = ( ( _i x. y ) + ( _i x. ( 0 -R y ) ) ) ) |
31 |
|
sn-it0e0 |
|- ( _i x. 0 ) = 0 |
32 |
31
|
a1i |
|- ( y e. RR -> ( _i x. 0 ) = 0 ) |
33 |
29 30 32
|
3eqtr3d |
|- ( y e. RR -> ( ( _i x. y ) + ( _i x. ( 0 -R y ) ) ) = 0 ) |
34 |
33
|
oveq2d |
|- ( y e. RR -> ( x + ( ( _i x. y ) + ( _i x. ( 0 -R y ) ) ) ) = ( x + 0 ) ) |
35 |
34
|
adantl |
|- ( ( x e. RR /\ y e. RR ) -> ( x + ( ( _i x. y ) + ( _i x. ( 0 -R y ) ) ) ) = ( x + 0 ) ) |
36 |
|
readdid1 |
|- ( x e. RR -> ( x + 0 ) = x ) |
37 |
36
|
adantr |
|- ( ( x e. RR /\ y e. RR ) -> ( x + 0 ) = x ) |
38 |
27 35 37
|
3eqtrd |
|- ( ( x e. RR /\ y e. RR ) -> ( ( x + ( _i x. y ) ) + ( _i x. ( 0 -R y ) ) ) = x ) |
39 |
38
|
ad2antlr |
|- ( ( ( A e. CC /\ ( x e. RR /\ y e. RR ) ) /\ A = ( x + ( _i x. y ) ) ) -> ( ( x + ( _i x. y ) ) + ( _i x. ( 0 -R y ) ) ) = x ) |
40 |
20 39
|
eqtrd |
|- ( ( ( A e. CC /\ ( x e. RR /\ y e. RR ) ) /\ A = ( x + ( _i x. y ) ) ) -> ( A + ( _i x. ( 0 -R y ) ) ) = x ) |
41 |
40
|
oveq1d |
|- ( ( ( A e. CC /\ ( x e. RR /\ y e. RR ) ) /\ A = ( x + ( _i x. y ) ) ) -> ( ( A + ( _i x. ( 0 -R y ) ) ) + ( 0 -R x ) ) = ( x + ( 0 -R x ) ) ) |
42 |
|
simpll |
|- ( ( ( A e. CC /\ ( x e. RR /\ y e. RR ) ) /\ A = ( x + ( _i x. y ) ) ) -> A e. CC ) |
43 |
6
|
ad2antlr |
|- ( ( ( A e. CC /\ ( x e. RR /\ y e. RR ) ) /\ A = ( x + ( _i x. y ) ) ) -> ( _i x. ( 0 -R y ) ) e. CC ) |
44 |
9
|
ad2antlr |
|- ( ( ( A e. CC /\ ( x e. RR /\ y e. RR ) ) /\ A = ( x + ( _i x. y ) ) ) -> ( 0 -R x ) e. CC ) |
45 |
42 43 44
|
addassd |
|- ( ( ( A e. CC /\ ( x e. RR /\ y e. RR ) ) /\ A = ( x + ( _i x. y ) ) ) -> ( ( A + ( _i x. ( 0 -R y ) ) ) + ( 0 -R x ) ) = ( A + ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) ) ) |
46 |
|
renegid |
|- ( x e. RR -> ( x + ( 0 -R x ) ) = 0 ) |
47 |
46
|
adantr |
|- ( ( x e. RR /\ y e. RR ) -> ( x + ( 0 -R x ) ) = 0 ) |
48 |
47
|
ad2antlr |
|- ( ( ( A e. CC /\ ( x e. RR /\ y e. RR ) ) /\ A = ( x + ( _i x. y ) ) ) -> ( x + ( 0 -R x ) ) = 0 ) |
49 |
41 45 48
|
3eqtr3d |
|- ( ( ( A e. CC /\ ( x e. RR /\ y e. RR ) ) /\ A = ( x + ( _i x. y ) ) ) -> ( A + ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) ) = 0 ) |
50 |
|
oveq2 |
|- ( A = ( x + ( _i x. y ) ) -> ( ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) + A ) = ( ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) + ( x + ( _i x. y ) ) ) ) |
51 |
22 26
|
addcld |
|- ( ( x e. RR /\ y e. RR ) -> ( x + ( _i x. y ) ) e. CC ) |
52 |
6 9 51
|
addassd |
|- ( ( x e. RR /\ y e. RR ) -> ( ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) + ( x + ( _i x. y ) ) ) = ( ( _i x. ( 0 -R y ) ) + ( ( 0 -R x ) + ( x + ( _i x. y ) ) ) ) ) |
53 |
9 22 26
|
addassd |
|- ( ( x e. RR /\ y e. RR ) -> ( ( ( 0 -R x ) + x ) + ( _i x. y ) ) = ( ( 0 -R x ) + ( x + ( _i x. y ) ) ) ) |
54 |
53
|
oveq2d |
|- ( ( x e. RR /\ y e. RR ) -> ( ( _i x. ( 0 -R y ) ) + ( ( ( 0 -R x ) + x ) + ( _i x. y ) ) ) = ( ( _i x. ( 0 -R y ) ) + ( ( 0 -R x ) + ( x + ( _i x. y ) ) ) ) ) |
55 |
|
renegid2 |
|- ( x e. RR -> ( ( 0 -R x ) + x ) = 0 ) |
56 |
55
|
adantr |
|- ( ( x e. RR /\ y e. RR ) -> ( ( 0 -R x ) + x ) = 0 ) |
57 |
56
|
oveq1d |
|- ( ( x e. RR /\ y e. RR ) -> ( ( ( 0 -R x ) + x ) + ( _i x. y ) ) = ( 0 + ( _i x. y ) ) ) |
58 |
|
sn-addid2 |
|- ( ( _i x. y ) e. CC -> ( 0 + ( _i x. y ) ) = ( _i x. y ) ) |
59 |
26 58
|
syl |
|- ( ( x e. RR /\ y e. RR ) -> ( 0 + ( _i x. y ) ) = ( _i x. y ) ) |
60 |
57 59
|
eqtrd |
|- ( ( x e. RR /\ y e. RR ) -> ( ( ( 0 -R x ) + x ) + ( _i x. y ) ) = ( _i x. y ) ) |
61 |
60
|
oveq2d |
|- ( ( x e. RR /\ y e. RR ) -> ( ( _i x. ( 0 -R y ) ) + ( ( ( 0 -R x ) + x ) + ( _i x. y ) ) ) = ( ( _i x. ( 0 -R y ) ) + ( _i x. y ) ) ) |
62 |
4
|
adantl |
|- ( ( x e. RR /\ y e. RR ) -> ( 0 -R y ) e. CC ) |
63 |
23 62 25
|
adddid |
|- ( ( x e. RR /\ y e. RR ) -> ( _i x. ( ( 0 -R y ) + y ) ) = ( ( _i x. ( 0 -R y ) ) + ( _i x. y ) ) ) |
64 |
|
renegid2 |
|- ( y e. RR -> ( ( 0 -R y ) + y ) = 0 ) |
65 |
64
|
adantl |
|- ( ( x e. RR /\ y e. RR ) -> ( ( 0 -R y ) + y ) = 0 ) |
66 |
65
|
oveq2d |
|- ( ( x e. RR /\ y e. RR ) -> ( _i x. ( ( 0 -R y ) + y ) ) = ( _i x. 0 ) ) |
67 |
66 31
|
eqtrdi |
|- ( ( x e. RR /\ y e. RR ) -> ( _i x. ( ( 0 -R y ) + y ) ) = 0 ) |
68 |
61 63 67
|
3eqtr2d |
|- ( ( x e. RR /\ y e. RR ) -> ( ( _i x. ( 0 -R y ) ) + ( ( ( 0 -R x ) + x ) + ( _i x. y ) ) ) = 0 ) |
69 |
52 54 68
|
3eqtr2d |
|- ( ( x e. RR /\ y e. RR ) -> ( ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) + ( x + ( _i x. y ) ) ) = 0 ) |
70 |
69
|
adantl |
|- ( ( A e. CC /\ ( x e. RR /\ y e. RR ) ) -> ( ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) + ( x + ( _i x. y ) ) ) = 0 ) |
71 |
50 70
|
sylan9eqr |
|- ( ( ( A e. CC /\ ( x e. RR /\ y e. RR ) ) /\ A = ( x + ( _i x. y ) ) ) -> ( ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) + A ) = 0 ) |
72 |
49 71
|
jca |
|- ( ( ( A e. CC /\ ( x e. RR /\ y e. RR ) ) /\ A = ( x + ( _i x. y ) ) ) -> ( ( A + ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) ) = 0 /\ ( ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) + A ) = 0 ) ) |
73 |
|
oveq2 |
|- ( b = ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) -> ( A + b ) = ( A + ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) ) ) |
74 |
73
|
eqeq1d |
|- ( b = ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) -> ( ( A + b ) = 0 <-> ( A + ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) ) = 0 ) ) |
75 |
|
oveq1 |
|- ( b = ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) -> ( b + A ) = ( ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) + A ) ) |
76 |
75
|
eqeq1d |
|- ( b = ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) -> ( ( b + A ) = 0 <-> ( ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) + A ) = 0 ) ) |
77 |
74 76
|
anbi12d |
|- ( b = ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) -> ( ( ( A + b ) = 0 /\ ( b + A ) = 0 ) <-> ( ( A + ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) ) = 0 /\ ( ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) + A ) = 0 ) ) ) |
78 |
72 77
|
syl5ibrcom |
|- ( ( ( A e. CC /\ ( x e. RR /\ y e. RR ) ) /\ A = ( x + ( _i x. y ) ) ) -> ( b = ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) -> ( ( A + b ) = 0 /\ ( b + A ) = 0 ) ) ) |
79 |
78
|
reximdv |
|- ( ( ( A e. CC /\ ( x e. RR /\ y e. RR ) ) /\ A = ( x + ( _i x. y ) ) ) -> ( E. b e. CC b = ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) -> E. b e. CC ( ( A + b ) = 0 /\ ( b + A ) = 0 ) ) ) |
80 |
79
|
expimpd |
|- ( ( A e. CC /\ ( x e. RR /\ y e. RR ) ) -> ( ( A = ( x + ( _i x. y ) ) /\ E. b e. CC b = ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) ) -> E. b e. CC ( ( A + b ) = 0 /\ ( b + A ) = 0 ) ) ) |
81 |
80
|
ancomsd |
|- ( ( A e. CC /\ ( x e. RR /\ y e. RR ) ) -> ( ( E. b e. CC b = ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) /\ A = ( x + ( _i x. y ) ) ) -> E. b e. CC ( ( A + b ) = 0 /\ ( b + A ) = 0 ) ) ) |
82 |
81
|
rexlimdvva |
|- ( A e. CC -> ( E. x e. RR E. y e. RR ( E. b e. CC b = ( ( _i x. ( 0 -R y ) ) + ( 0 -R x ) ) /\ A = ( x + ( _i x. y ) ) ) -> E. b e. CC ( ( A + b ) = 0 /\ ( b + A ) = 0 ) ) ) |
83 |
18 82
|
mpd |
|- ( A e. CC -> E. b e. CC ( ( A + b ) = 0 /\ ( b + A ) = 0 ) ) |