Step |
Hyp |
Ref |
Expression |
1 |
|
0cn |
|- 0 e. CC |
2 |
|
cnre |
|- ( 0 e. CC -> E. a e. RR E. b e. RR 0 = ( a + ( _i x. b ) ) ) |
3 |
|
oveq2 |
|- ( 0 = ( a + ( _i x. b ) ) -> ( ( 0 -R a ) + 0 ) = ( ( 0 -R a ) + ( a + ( _i x. b ) ) ) ) |
4 |
|
ax-icn |
|- _i e. CC |
5 |
4
|
a1i |
|- ( b e. RR -> _i e. CC ) |
6 |
|
recn |
|- ( b e. RR -> b e. CC ) |
7 |
|
0cnd |
|- ( b e. RR -> 0 e. CC ) |
8 |
5 6 7
|
mulassd |
|- ( b e. RR -> ( ( _i x. b ) x. 0 ) = ( _i x. ( b x. 0 ) ) ) |
9 |
|
remul01 |
|- ( b e. RR -> ( b x. 0 ) = 0 ) |
10 |
9
|
oveq2d |
|- ( b e. RR -> ( _i x. ( b x. 0 ) ) = ( _i x. 0 ) ) |
11 |
8 10
|
eqtrd |
|- ( b e. RR -> ( ( _i x. b ) x. 0 ) = ( _i x. 0 ) ) |
12 |
11
|
ad2antlr |
|- ( ( ( a e. RR /\ b e. RR ) /\ ( ( 0 -R a ) + 0 ) = ( ( 0 -R a ) + ( a + ( _i x. b ) ) ) ) -> ( ( _i x. b ) x. 0 ) = ( _i x. 0 ) ) |
13 |
|
rernegcl |
|- ( a e. RR -> ( 0 -R a ) e. RR ) |
14 |
13
|
recnd |
|- ( a e. RR -> ( 0 -R a ) e. CC ) |
15 |
14
|
adantr |
|- ( ( a e. RR /\ b e. RR ) -> ( 0 -R a ) e. CC ) |
16 |
|
recn |
|- ( a e. RR -> a e. CC ) |
17 |
16
|
adantr |
|- ( ( a e. RR /\ b e. RR ) -> a e. CC ) |
18 |
5 6
|
mulcld |
|- ( b e. RR -> ( _i x. b ) e. CC ) |
19 |
18
|
adantl |
|- ( ( a e. RR /\ b e. RR ) -> ( _i x. b ) e. CC ) |
20 |
15 17 19
|
addassd |
|- ( ( a e. RR /\ b e. RR ) -> ( ( ( 0 -R a ) + a ) + ( _i x. b ) ) = ( ( 0 -R a ) + ( a + ( _i x. b ) ) ) ) |
21 |
|
renegid2 |
|- ( a e. RR -> ( ( 0 -R a ) + a ) = 0 ) |
22 |
21
|
oveq1d |
|- ( a e. RR -> ( ( ( 0 -R a ) + a ) + ( _i x. b ) ) = ( 0 + ( _i x. b ) ) ) |
23 |
|
sn-addid2 |
|- ( ( _i x. b ) e. CC -> ( 0 + ( _i x. b ) ) = ( _i x. b ) ) |
24 |
18 23
|
syl |
|- ( b e. RR -> ( 0 + ( _i x. b ) ) = ( _i x. b ) ) |
25 |
22 24
|
sylan9eq |
|- ( ( a e. RR /\ b e. RR ) -> ( ( ( 0 -R a ) + a ) + ( _i x. b ) ) = ( _i x. b ) ) |
26 |
20 25
|
eqtr3d |
|- ( ( a e. RR /\ b e. RR ) -> ( ( 0 -R a ) + ( a + ( _i x. b ) ) ) = ( _i x. b ) ) |
27 |
26
|
eqeq2d |
|- ( ( a e. RR /\ b e. RR ) -> ( ( ( 0 -R a ) + 0 ) = ( ( 0 -R a ) + ( a + ( _i x. b ) ) ) <-> ( ( 0 -R a ) + 0 ) = ( _i x. b ) ) ) |
28 |
27
|
biimpa |
|- ( ( ( a e. RR /\ b e. RR ) /\ ( ( 0 -R a ) + 0 ) = ( ( 0 -R a ) + ( a + ( _i x. b ) ) ) ) -> ( ( 0 -R a ) + 0 ) = ( _i x. b ) ) |
29 |
28
|
oveq1d |
|- ( ( ( a e. RR /\ b e. RR ) /\ ( ( 0 -R a ) + 0 ) = ( ( 0 -R a ) + ( a + ( _i x. b ) ) ) ) -> ( ( ( 0 -R a ) + 0 ) x. 0 ) = ( ( _i x. b ) x. 0 ) ) |
30 |
|
elre0re |
|- ( a e. RR -> 0 e. RR ) |
31 |
13 30
|
readdcld |
|- ( a e. RR -> ( ( 0 -R a ) + 0 ) e. RR ) |
32 |
31
|
ad2antrr |
|- ( ( ( a e. RR /\ b e. RR ) /\ ( ( 0 -R a ) + 0 ) = ( ( 0 -R a ) + ( a + ( _i x. b ) ) ) ) -> ( ( 0 -R a ) + 0 ) e. RR ) |
33 |
|
remul01 |
|- ( ( ( 0 -R a ) + 0 ) e. RR -> ( ( ( 0 -R a ) + 0 ) x. 0 ) = 0 ) |
34 |
32 33
|
syl |
|- ( ( ( a e. RR /\ b e. RR ) /\ ( ( 0 -R a ) + 0 ) = ( ( 0 -R a ) + ( a + ( _i x. b ) ) ) ) -> ( ( ( 0 -R a ) + 0 ) x. 0 ) = 0 ) |
35 |
29 34
|
eqtr3d |
|- ( ( ( a e. RR /\ b e. RR ) /\ ( ( 0 -R a ) + 0 ) = ( ( 0 -R a ) + ( a + ( _i x. b ) ) ) ) -> ( ( _i x. b ) x. 0 ) = 0 ) |
36 |
12 35
|
eqtr3d |
|- ( ( ( a e. RR /\ b e. RR ) /\ ( ( 0 -R a ) + 0 ) = ( ( 0 -R a ) + ( a + ( _i x. b ) ) ) ) -> ( _i x. 0 ) = 0 ) |
37 |
36
|
ex |
|- ( ( a e. RR /\ b e. RR ) -> ( ( ( 0 -R a ) + 0 ) = ( ( 0 -R a ) + ( a + ( _i x. b ) ) ) -> ( _i x. 0 ) = 0 ) ) |
38 |
3 37
|
syl5 |
|- ( ( a e. RR /\ b e. RR ) -> ( 0 = ( a + ( _i x. b ) ) -> ( _i x. 0 ) = 0 ) ) |
39 |
38
|
rexlimivv |
|- ( E. a e. RR E. b e. RR 0 = ( a + ( _i x. b ) ) -> ( _i x. 0 ) = 0 ) |
40 |
1 2 39
|
mp2b |
|- ( _i x. 0 ) = 0 |