Step |
Hyp |
Ref |
Expression |
1 |
|
0cn |
⊢ 0 ∈ ℂ |
2 |
|
cnre |
⊢ ( 0 ∈ ℂ → ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ 0 = ( 𝑎 + ( i · 𝑏 ) ) ) |
3 |
|
oveq2 |
⊢ ( 0 = ( 𝑎 + ( i · 𝑏 ) ) → ( ( 0 −ℝ 𝑎 ) + 0 ) = ( ( 0 −ℝ 𝑎 ) + ( 𝑎 + ( i · 𝑏 ) ) ) ) |
4 |
|
ax-icn |
⊢ i ∈ ℂ |
5 |
4
|
a1i |
⊢ ( 𝑏 ∈ ℝ → i ∈ ℂ ) |
6 |
|
recn |
⊢ ( 𝑏 ∈ ℝ → 𝑏 ∈ ℂ ) |
7 |
|
0cnd |
⊢ ( 𝑏 ∈ ℝ → 0 ∈ ℂ ) |
8 |
5 6 7
|
mulassd |
⊢ ( 𝑏 ∈ ℝ → ( ( i · 𝑏 ) · 0 ) = ( i · ( 𝑏 · 0 ) ) ) |
9 |
|
remul01 |
⊢ ( 𝑏 ∈ ℝ → ( 𝑏 · 0 ) = 0 ) |
10 |
9
|
oveq2d |
⊢ ( 𝑏 ∈ ℝ → ( i · ( 𝑏 · 0 ) ) = ( i · 0 ) ) |
11 |
8 10
|
eqtrd |
⊢ ( 𝑏 ∈ ℝ → ( ( i · 𝑏 ) · 0 ) = ( i · 0 ) ) |
12 |
11
|
ad2antlr |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( ( 0 −ℝ 𝑎 ) + 0 ) = ( ( 0 −ℝ 𝑎 ) + ( 𝑎 + ( i · 𝑏 ) ) ) ) → ( ( i · 𝑏 ) · 0 ) = ( i · 0 ) ) |
13 |
|
rernegcl |
⊢ ( 𝑎 ∈ ℝ → ( 0 −ℝ 𝑎 ) ∈ ℝ ) |
14 |
13
|
recnd |
⊢ ( 𝑎 ∈ ℝ → ( 0 −ℝ 𝑎 ) ∈ ℂ ) |
15 |
14
|
adantr |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 0 −ℝ 𝑎 ) ∈ ℂ ) |
16 |
|
recn |
⊢ ( 𝑎 ∈ ℝ → 𝑎 ∈ ℂ ) |
17 |
16
|
adantr |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → 𝑎 ∈ ℂ ) |
18 |
5 6
|
mulcld |
⊢ ( 𝑏 ∈ ℝ → ( i · 𝑏 ) ∈ ℂ ) |
19 |
18
|
adantl |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( i · 𝑏 ) ∈ ℂ ) |
20 |
15 17 19
|
addassd |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( ( ( 0 −ℝ 𝑎 ) + 𝑎 ) + ( i · 𝑏 ) ) = ( ( 0 −ℝ 𝑎 ) + ( 𝑎 + ( i · 𝑏 ) ) ) ) |
21 |
|
renegid2 |
⊢ ( 𝑎 ∈ ℝ → ( ( 0 −ℝ 𝑎 ) + 𝑎 ) = 0 ) |
22 |
21
|
oveq1d |
⊢ ( 𝑎 ∈ ℝ → ( ( ( 0 −ℝ 𝑎 ) + 𝑎 ) + ( i · 𝑏 ) ) = ( 0 + ( i · 𝑏 ) ) ) |
23 |
|
sn-addid2 |
⊢ ( ( i · 𝑏 ) ∈ ℂ → ( 0 + ( i · 𝑏 ) ) = ( i · 𝑏 ) ) |
24 |
18 23
|
syl |
⊢ ( 𝑏 ∈ ℝ → ( 0 + ( i · 𝑏 ) ) = ( i · 𝑏 ) ) |
25 |
22 24
|
sylan9eq |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( ( ( 0 −ℝ 𝑎 ) + 𝑎 ) + ( i · 𝑏 ) ) = ( i · 𝑏 ) ) |
26 |
20 25
|
eqtr3d |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( ( 0 −ℝ 𝑎 ) + ( 𝑎 + ( i · 𝑏 ) ) ) = ( i · 𝑏 ) ) |
27 |
26
|
eqeq2d |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( ( ( 0 −ℝ 𝑎 ) + 0 ) = ( ( 0 −ℝ 𝑎 ) + ( 𝑎 + ( i · 𝑏 ) ) ) ↔ ( ( 0 −ℝ 𝑎 ) + 0 ) = ( i · 𝑏 ) ) ) |
28 |
27
|
biimpa |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( ( 0 −ℝ 𝑎 ) + 0 ) = ( ( 0 −ℝ 𝑎 ) + ( 𝑎 + ( i · 𝑏 ) ) ) ) → ( ( 0 −ℝ 𝑎 ) + 0 ) = ( i · 𝑏 ) ) |
29 |
28
|
oveq1d |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( ( 0 −ℝ 𝑎 ) + 0 ) = ( ( 0 −ℝ 𝑎 ) + ( 𝑎 + ( i · 𝑏 ) ) ) ) → ( ( ( 0 −ℝ 𝑎 ) + 0 ) · 0 ) = ( ( i · 𝑏 ) · 0 ) ) |
30 |
|
elre0re |
⊢ ( 𝑎 ∈ ℝ → 0 ∈ ℝ ) |
31 |
13 30
|
readdcld |
⊢ ( 𝑎 ∈ ℝ → ( ( 0 −ℝ 𝑎 ) + 0 ) ∈ ℝ ) |
32 |
31
|
ad2antrr |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( ( 0 −ℝ 𝑎 ) + 0 ) = ( ( 0 −ℝ 𝑎 ) + ( 𝑎 + ( i · 𝑏 ) ) ) ) → ( ( 0 −ℝ 𝑎 ) + 0 ) ∈ ℝ ) |
33 |
|
remul01 |
⊢ ( ( ( 0 −ℝ 𝑎 ) + 0 ) ∈ ℝ → ( ( ( 0 −ℝ 𝑎 ) + 0 ) · 0 ) = 0 ) |
34 |
32 33
|
syl |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( ( 0 −ℝ 𝑎 ) + 0 ) = ( ( 0 −ℝ 𝑎 ) + ( 𝑎 + ( i · 𝑏 ) ) ) ) → ( ( ( 0 −ℝ 𝑎 ) + 0 ) · 0 ) = 0 ) |
35 |
29 34
|
eqtr3d |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( ( 0 −ℝ 𝑎 ) + 0 ) = ( ( 0 −ℝ 𝑎 ) + ( 𝑎 + ( i · 𝑏 ) ) ) ) → ( ( i · 𝑏 ) · 0 ) = 0 ) |
36 |
12 35
|
eqtr3d |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( ( 0 −ℝ 𝑎 ) + 0 ) = ( ( 0 −ℝ 𝑎 ) + ( 𝑎 + ( i · 𝑏 ) ) ) ) → ( i · 0 ) = 0 ) |
37 |
36
|
ex |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( ( ( 0 −ℝ 𝑎 ) + 0 ) = ( ( 0 −ℝ 𝑎 ) + ( 𝑎 + ( i · 𝑏 ) ) ) → ( i · 0 ) = 0 ) ) |
38 |
3 37
|
syl5 |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 0 = ( 𝑎 + ( i · 𝑏 ) ) → ( i · 0 ) = 0 ) ) |
39 |
38
|
rexlimivv |
⊢ ( ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ 0 = ( 𝑎 + ( i · 𝑏 ) ) → ( i · 0 ) = 0 ) |
40 |
1 2 39
|
mp2b |
⊢ ( i · 0 ) = 0 |