| Step |
Hyp |
Ref |
Expression |
| 1 |
|
renegid |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + ( 0 −ℝ 𝐴 ) ) = 0 ) |
| 2 |
1
|
oveq2d |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 −ℝ 𝐴 ) + ( 𝐴 + ( 0 −ℝ 𝐴 ) ) ) = ( ( 0 −ℝ 𝐴 ) + 0 ) ) |
| 3 |
|
rernegcl |
⊢ ( 𝐴 ∈ ℝ → ( 0 −ℝ 𝐴 ) ∈ ℝ ) |
| 4 |
|
readdrid |
⊢ ( ( 0 −ℝ 𝐴 ) ∈ ℝ → ( ( 0 −ℝ 𝐴 ) + 0 ) = ( 0 −ℝ 𝐴 ) ) |
| 5 |
3 4
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 −ℝ 𝐴 ) + 0 ) = ( 0 −ℝ 𝐴 ) ) |
| 6 |
2 5
|
eqtrd |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 −ℝ 𝐴 ) + ( 𝐴 + ( 0 −ℝ 𝐴 ) ) ) = ( 0 −ℝ 𝐴 ) ) |
| 7 |
3
|
recnd |
⊢ ( 𝐴 ∈ ℝ → ( 0 −ℝ 𝐴 ) ∈ ℂ ) |
| 8 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 9 |
7 8 7
|
addassd |
⊢ ( 𝐴 ∈ ℝ → ( ( ( 0 −ℝ 𝐴 ) + 𝐴 ) + ( 0 −ℝ 𝐴 ) ) = ( ( 0 −ℝ 𝐴 ) + ( 𝐴 + ( 0 −ℝ 𝐴 ) ) ) ) |
| 10 |
|
readdlid |
⊢ ( ( 0 −ℝ 𝐴 ) ∈ ℝ → ( 0 + ( 0 −ℝ 𝐴 ) ) = ( 0 −ℝ 𝐴 ) ) |
| 11 |
3 10
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( 0 + ( 0 −ℝ 𝐴 ) ) = ( 0 −ℝ 𝐴 ) ) |
| 12 |
6 9 11
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℝ → ( ( ( 0 −ℝ 𝐴 ) + 𝐴 ) + ( 0 −ℝ 𝐴 ) ) = ( 0 + ( 0 −ℝ 𝐴 ) ) ) |
| 13 |
|
id |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ ) |
| 14 |
3 13
|
readdcld |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 −ℝ 𝐴 ) + 𝐴 ) ∈ ℝ ) |
| 15 |
|
elre0re |
⊢ ( 𝐴 ∈ ℝ → 0 ∈ ℝ ) |
| 16 |
|
readdcan2 |
⊢ ( ( ( ( 0 −ℝ 𝐴 ) + 𝐴 ) ∈ ℝ ∧ 0 ∈ ℝ ∧ ( 0 −ℝ 𝐴 ) ∈ ℝ ) → ( ( ( ( 0 −ℝ 𝐴 ) + 𝐴 ) + ( 0 −ℝ 𝐴 ) ) = ( 0 + ( 0 −ℝ 𝐴 ) ) ↔ ( ( 0 −ℝ 𝐴 ) + 𝐴 ) = 0 ) ) |
| 17 |
14 15 3 16
|
syl3anc |
⊢ ( 𝐴 ∈ ℝ → ( ( ( ( 0 −ℝ 𝐴 ) + 𝐴 ) + ( 0 −ℝ 𝐴 ) ) = ( 0 + ( 0 −ℝ 𝐴 ) ) ↔ ( ( 0 −ℝ 𝐴 ) + 𝐴 ) = 0 ) ) |
| 18 |
12 17
|
mpbid |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 −ℝ 𝐴 ) + 𝐴 ) = 0 ) |