| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
⊢ ( ( 𝐴 + 𝐶 ) = ( 𝐵 + 𝐶 ) → ( ( 𝐴 + 𝐶 ) + ( 0 −ℝ 𝐶 ) ) = ( ( 𝐵 + 𝐶 ) + ( 0 −ℝ 𝐶 ) ) ) |
| 2 |
1
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 + 𝐶 ) = ( 𝐵 + 𝐶 ) ) → ( ( 𝐴 + 𝐶 ) + ( 0 −ℝ 𝐶 ) ) = ( ( 𝐵 + 𝐶 ) + ( 0 −ℝ 𝐶 ) ) ) |
| 3 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
| 4 |
3
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
| 5 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℝ ) |
| 6 |
5
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℂ ) |
| 7 |
|
rernegcl |
⊢ ( 𝐶 ∈ ℝ → ( 0 −ℝ 𝐶 ) ∈ ℝ ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 0 −ℝ 𝐶 ) ∈ ℝ ) |
| 9 |
8
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 0 −ℝ 𝐶 ) ∈ ℂ ) |
| 10 |
4 6 9
|
addassd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 + 𝐶 ) + ( 0 −ℝ 𝐶 ) ) = ( 𝐴 + ( 𝐶 + ( 0 −ℝ 𝐶 ) ) ) ) |
| 11 |
|
renegid |
⊢ ( 𝐶 ∈ ℝ → ( 𝐶 + ( 0 −ℝ 𝐶 ) ) = 0 ) |
| 12 |
11
|
oveq2d |
⊢ ( 𝐶 ∈ ℝ → ( 𝐴 + ( 𝐶 + ( 0 −ℝ 𝐶 ) ) ) = ( 𝐴 + 0 ) ) |
| 13 |
12
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 + ( 𝐶 + ( 0 −ℝ 𝐶 ) ) ) = ( 𝐴 + 0 ) ) |
| 14 |
|
readdrid |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 0 ) = 𝐴 ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 + 0 ) = 𝐴 ) |
| 16 |
10 13 15
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 + 𝐶 ) + ( 0 −ℝ 𝐶 ) ) = 𝐴 ) |
| 17 |
16
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 + 𝐶 ) + ( 0 −ℝ 𝐶 ) ) = 𝐴 ) |
| 18 |
17
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 + 𝐶 ) = ( 𝐵 + 𝐶 ) ) → ( ( 𝐴 + 𝐶 ) + ( 0 −ℝ 𝐶 ) ) = 𝐴 ) |
| 19 |
|
simpl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
| 20 |
19
|
recnd |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℂ ) |
| 21 |
|
simpr |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℝ ) |
| 22 |
21
|
recnd |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℂ ) |
| 23 |
7
|
adantl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 0 −ℝ 𝐶 ) ∈ ℝ ) |
| 24 |
23
|
recnd |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 0 −ℝ 𝐶 ) ∈ ℂ ) |
| 25 |
20 22 24
|
addassd |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐵 + 𝐶 ) + ( 0 −ℝ 𝐶 ) ) = ( 𝐵 + ( 𝐶 + ( 0 −ℝ 𝐶 ) ) ) ) |
| 26 |
11
|
oveq2d |
⊢ ( 𝐶 ∈ ℝ → ( 𝐵 + ( 𝐶 + ( 0 −ℝ 𝐶 ) ) ) = ( 𝐵 + 0 ) ) |
| 27 |
26
|
adantl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 + ( 𝐶 + ( 0 −ℝ 𝐶 ) ) ) = ( 𝐵 + 0 ) ) |
| 28 |
|
readdrid |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 + 0 ) = 𝐵 ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 + 0 ) = 𝐵 ) |
| 30 |
25 27 29
|
3eqtrd |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐵 + 𝐶 ) + ( 0 −ℝ 𝐶 ) ) = 𝐵 ) |
| 31 |
30
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐵 + 𝐶 ) + ( 0 −ℝ 𝐶 ) ) = 𝐵 ) |
| 32 |
31
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 + 𝐶 ) = ( 𝐵 + 𝐶 ) ) → ( ( 𝐵 + 𝐶 ) + ( 0 −ℝ 𝐶 ) ) = 𝐵 ) |
| 33 |
2 18 32
|
3eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 + 𝐶 ) = ( 𝐵 + 𝐶 ) ) → 𝐴 = 𝐵 ) |
| 34 |
33
|
ex |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 + 𝐶 ) = ( 𝐵 + 𝐶 ) → 𝐴 = 𝐵 ) ) |
| 35 |
|
oveq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 + 𝐶 ) = ( 𝐵 + 𝐶 ) ) |
| 36 |
34 35
|
impbid1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 + 𝐶 ) = ( 𝐵 + 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |