Description: Commuted version of readdcan without ax-mulcom . (Contributed by SN, 21-Feb-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | readdcan2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 | |
|
2 | 1 | adantl | |
3 | simpl | |
|
4 | 3 | recnd | |
5 | simpr | |
|
6 | 5 | recnd | |
7 | rernegcl | |
|
8 | 7 | adantl | |
9 | 8 | recnd | |
10 | 4 6 9 | addassd | |
11 | renegid | |
|
12 | 11 | oveq2d | |
13 | 12 | adantl | |
14 | readdrid | |
|
15 | 14 | adantr | |
16 | 10 13 15 | 3eqtrd | |
17 | 16 | 3adant2 | |
18 | 17 | adantr | |
19 | simpl | |
|
20 | 19 | recnd | |
21 | simpr | |
|
22 | 21 | recnd | |
23 | 7 | adantl | |
24 | 23 | recnd | |
25 | 20 22 24 | addassd | |
26 | 11 | oveq2d | |
27 | 26 | adantl | |
28 | readdrid | |
|
29 | 28 | adantr | |
30 | 25 27 29 | 3eqtrd | |
31 | 30 | 3adant1 | |
32 | 31 | adantr | |
33 | 2 18 32 | 3eqtr3d | |
34 | 33 | ex | |
35 | oveq1 | |
|
36 | 34 35 | impbid1 | |