Metamath Proof Explorer


Theorem readdcan2

Description: Commuted version of readdcan without ax-mulcom . (Contributed by SN, 21-Feb-2024)

Ref Expression
Assertion readdcan2 ABCA+C=B+CA=B

Proof

Step Hyp Ref Expression
1 oveq1 A+C=B+CA+C+0-C=B+C+0-C
2 1 adantl ABCA+C=B+CA+C+0-C=B+C+0-C
3 simpl ACA
4 3 recnd ACA
5 simpr ACC
6 5 recnd ACC
7 rernegcl C0-C
8 7 adantl AC0-C
9 8 recnd AC0-C
10 4 6 9 addassd ACA+C+0-C=A+C+0-C
11 renegid CC+0-C=0
12 11 oveq2d CA+C+0-C=A+0
13 12 adantl ACA+C+0-C=A+0
14 readdrid AA+0=A
15 14 adantr ACA+0=A
16 10 13 15 3eqtrd ACA+C+0-C=A
17 16 3adant2 ABCA+C+0-C=A
18 17 adantr ABCA+C=B+CA+C+0-C=A
19 simpl BCB
20 19 recnd BCB
21 simpr BCC
22 21 recnd BCC
23 7 adantl BC0-C
24 23 recnd BC0-C
25 20 22 24 addassd BCB+C+0-C=B+C+0-C
26 11 oveq2d CB+C+0-C=B+0
27 26 adantl BCB+C+0-C=B+0
28 readdrid BB+0=B
29 28 adantr BCB+0=B
30 25 27 29 3eqtrd BCB+C+0-C=B
31 30 3adant1 ABCB+C+0-C=B
32 31 adantr ABCA+C=B+CB+C+0-C=B
33 2 18 32 3eqtr3d ABCA+C=B+CA=B
34 33 ex ABCA+C=B+CA=B
35 oveq1 A=BA+C=B+C
36 34 35 impbid1 ABCA+C=B+CA=B