Step |
Hyp |
Ref |
Expression |
1 |
|
renegid |
|- ( A e. RR -> ( A + ( 0 -R A ) ) = 0 ) |
2 |
1
|
oveq2d |
|- ( A e. RR -> ( ( 0 -R A ) + ( A + ( 0 -R A ) ) ) = ( ( 0 -R A ) + 0 ) ) |
3 |
|
rernegcl |
|- ( A e. RR -> ( 0 -R A ) e. RR ) |
4 |
|
readdid1 |
|- ( ( 0 -R A ) e. RR -> ( ( 0 -R A ) + 0 ) = ( 0 -R A ) ) |
5 |
3 4
|
syl |
|- ( A e. RR -> ( ( 0 -R A ) + 0 ) = ( 0 -R A ) ) |
6 |
2 5
|
eqtrd |
|- ( A e. RR -> ( ( 0 -R A ) + ( A + ( 0 -R A ) ) ) = ( 0 -R A ) ) |
7 |
3
|
recnd |
|- ( A e. RR -> ( 0 -R A ) e. CC ) |
8 |
|
recn |
|- ( A e. RR -> A e. CC ) |
9 |
7 8 7
|
addassd |
|- ( A e. RR -> ( ( ( 0 -R A ) + A ) + ( 0 -R A ) ) = ( ( 0 -R A ) + ( A + ( 0 -R A ) ) ) ) |
10 |
|
readdid2 |
|- ( ( 0 -R A ) e. RR -> ( 0 + ( 0 -R A ) ) = ( 0 -R A ) ) |
11 |
3 10
|
syl |
|- ( A e. RR -> ( 0 + ( 0 -R A ) ) = ( 0 -R A ) ) |
12 |
6 9 11
|
3eqtr4d |
|- ( A e. RR -> ( ( ( 0 -R A ) + A ) + ( 0 -R A ) ) = ( 0 + ( 0 -R A ) ) ) |
13 |
|
id |
|- ( A e. RR -> A e. RR ) |
14 |
3 13
|
readdcld |
|- ( A e. RR -> ( ( 0 -R A ) + A ) e. RR ) |
15 |
|
elre0re |
|- ( A e. RR -> 0 e. RR ) |
16 |
|
readdcan2 |
|- ( ( ( ( 0 -R A ) + A ) e. RR /\ 0 e. RR /\ ( 0 -R A ) e. RR ) -> ( ( ( ( 0 -R A ) + A ) + ( 0 -R A ) ) = ( 0 + ( 0 -R A ) ) <-> ( ( 0 -R A ) + A ) = 0 ) ) |
17 |
14 15 3 16
|
syl3anc |
|- ( A e. RR -> ( ( ( ( 0 -R A ) + A ) + ( 0 -R A ) ) = ( 0 + ( 0 -R A ) ) <-> ( ( 0 -R A ) + A ) = 0 ) ) |
18 |
12 17
|
mpbid |
|- ( A e. RR -> ( ( 0 -R A ) + A ) = 0 ) |