| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnre |
⊢ ( 𝐴 ∈ ℂ → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) |
| 2 |
|
oveq2 |
⊢ ( 𝑏 = ( ( i · ( 0 −ℝ 𝑦 ) ) + ( 0 −ℝ 𝑥 ) ) → ( ( 𝑥 + ( i · 𝑦 ) ) + 𝑏 ) = ( ( 𝑥 + ( i · 𝑦 ) ) + ( ( i · ( 0 −ℝ 𝑦 ) ) + ( 0 −ℝ 𝑥 ) ) ) ) |
| 3 |
2
|
eqeq1d |
⊢ ( 𝑏 = ( ( i · ( 0 −ℝ 𝑦 ) ) + ( 0 −ℝ 𝑥 ) ) → ( ( ( 𝑥 + ( i · 𝑦 ) ) + 𝑏 ) = 0 ↔ ( ( 𝑥 + ( i · 𝑦 ) ) + ( ( i · ( 0 −ℝ 𝑦 ) ) + ( 0 −ℝ 𝑥 ) ) ) = 0 ) ) |
| 4 |
|
oveq1 |
⊢ ( 𝑏 = ( ( i · ( 0 −ℝ 𝑦 ) ) + ( 0 −ℝ 𝑥 ) ) → ( 𝑏 + ( 𝑥 + ( i · 𝑦 ) ) ) = ( ( ( i · ( 0 −ℝ 𝑦 ) ) + ( 0 −ℝ 𝑥 ) ) + ( 𝑥 + ( i · 𝑦 ) ) ) ) |
| 5 |
4
|
eqeq1d |
⊢ ( 𝑏 = ( ( i · ( 0 −ℝ 𝑦 ) ) + ( 0 −ℝ 𝑥 ) ) → ( ( 𝑏 + ( 𝑥 + ( i · 𝑦 ) ) ) = 0 ↔ ( ( ( i · ( 0 −ℝ 𝑦 ) ) + ( 0 −ℝ 𝑥 ) ) + ( 𝑥 + ( i · 𝑦 ) ) ) = 0 ) ) |
| 6 |
3 5
|
anbi12d |
⊢ ( 𝑏 = ( ( i · ( 0 −ℝ 𝑦 ) ) + ( 0 −ℝ 𝑥 ) ) → ( ( ( ( 𝑥 + ( i · 𝑦 ) ) + 𝑏 ) = 0 ∧ ( 𝑏 + ( 𝑥 + ( i · 𝑦 ) ) ) = 0 ) ↔ ( ( ( 𝑥 + ( i · 𝑦 ) ) + ( ( i · ( 0 −ℝ 𝑦 ) ) + ( 0 −ℝ 𝑥 ) ) ) = 0 ∧ ( ( ( i · ( 0 −ℝ 𝑦 ) ) + ( 0 −ℝ 𝑥 ) ) + ( 𝑥 + ( i · 𝑦 ) ) ) = 0 ) ) ) |
| 7 |
|
ax-icn |
⊢ i ∈ ℂ |
| 8 |
7
|
a1i |
⊢ ( 𝑦 ∈ ℝ → i ∈ ℂ ) |
| 9 |
|
rernegcl |
⊢ ( 𝑦 ∈ ℝ → ( 0 −ℝ 𝑦 ) ∈ ℝ ) |
| 10 |
9
|
recnd |
⊢ ( 𝑦 ∈ ℝ → ( 0 −ℝ 𝑦 ) ∈ ℂ ) |
| 11 |
8 10
|
mulcld |
⊢ ( 𝑦 ∈ ℝ → ( i · ( 0 −ℝ 𝑦 ) ) ∈ ℂ ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( i · ( 0 −ℝ 𝑦 ) ) ∈ ℂ ) |
| 13 |
|
rernegcl |
⊢ ( 𝑥 ∈ ℝ → ( 0 −ℝ 𝑥 ) ∈ ℝ ) |
| 14 |
13
|
recnd |
⊢ ( 𝑥 ∈ ℝ → ( 0 −ℝ 𝑥 ) ∈ ℂ ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 0 −ℝ 𝑥 ) ∈ ℂ ) |
| 16 |
12 15
|
addcld |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( i · ( 0 −ℝ 𝑦 ) ) + ( 0 −ℝ 𝑥 ) ) ∈ ℂ ) |
| 17 |
|
recn |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑥 ∈ ℂ ) |
| 19 |
|
recn |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) |
| 20 |
8 19
|
mulcld |
⊢ ( 𝑦 ∈ ℝ → ( i · 𝑦 ) ∈ ℂ ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( i · 𝑦 ) ∈ ℂ ) |
| 22 |
18 21 12
|
addassd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑥 + ( i · 𝑦 ) ) + ( i · ( 0 −ℝ 𝑦 ) ) ) = ( 𝑥 + ( ( i · 𝑦 ) + ( i · ( 0 −ℝ 𝑦 ) ) ) ) ) |
| 23 |
8 19 10
|
adddid |
⊢ ( 𝑦 ∈ ℝ → ( i · ( 𝑦 + ( 0 −ℝ 𝑦 ) ) ) = ( ( i · 𝑦 ) + ( i · ( 0 −ℝ 𝑦 ) ) ) ) |
| 24 |
|
renegid |
⊢ ( 𝑦 ∈ ℝ → ( 𝑦 + ( 0 −ℝ 𝑦 ) ) = 0 ) |
| 25 |
24
|
oveq2d |
⊢ ( 𝑦 ∈ ℝ → ( i · ( 𝑦 + ( 0 −ℝ 𝑦 ) ) ) = ( i · 0 ) ) |
| 26 |
|
sn-it0e0 |
⊢ ( i · 0 ) = 0 |
| 27 |
25 26
|
eqtrdi |
⊢ ( 𝑦 ∈ ℝ → ( i · ( 𝑦 + ( 0 −ℝ 𝑦 ) ) ) = 0 ) |
| 28 |
23 27
|
eqtr3d |
⊢ ( 𝑦 ∈ ℝ → ( ( i · 𝑦 ) + ( i · ( 0 −ℝ 𝑦 ) ) ) = 0 ) |
| 29 |
28
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( i · 𝑦 ) + ( i · ( 0 −ℝ 𝑦 ) ) ) = 0 ) |
| 30 |
29
|
oveq2d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + ( ( i · 𝑦 ) + ( i · ( 0 −ℝ 𝑦 ) ) ) ) = ( 𝑥 + 0 ) ) |
| 31 |
|
readdrid |
⊢ ( 𝑥 ∈ ℝ → ( 𝑥 + 0 ) = 𝑥 ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + 0 ) = 𝑥 ) |
| 33 |
22 30 32
|
3eqtrd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑥 + ( i · 𝑦 ) ) + ( i · ( 0 −ℝ 𝑦 ) ) ) = 𝑥 ) |
| 34 |
33
|
oveq1d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( 𝑥 + ( i · 𝑦 ) ) + ( i · ( 0 −ℝ 𝑦 ) ) ) + ( 0 −ℝ 𝑥 ) ) = ( 𝑥 + ( 0 −ℝ 𝑥 ) ) ) |
| 35 |
18 21
|
addcld |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + ( i · 𝑦 ) ) ∈ ℂ ) |
| 36 |
35 12 15
|
addassd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( 𝑥 + ( i · 𝑦 ) ) + ( i · ( 0 −ℝ 𝑦 ) ) ) + ( 0 −ℝ 𝑥 ) ) = ( ( 𝑥 + ( i · 𝑦 ) ) + ( ( i · ( 0 −ℝ 𝑦 ) ) + ( 0 −ℝ 𝑥 ) ) ) ) |
| 37 |
|
renegid |
⊢ ( 𝑥 ∈ ℝ → ( 𝑥 + ( 0 −ℝ 𝑥 ) ) = 0 ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + ( 0 −ℝ 𝑥 ) ) = 0 ) |
| 39 |
34 36 38
|
3eqtr3d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑥 + ( i · 𝑦 ) ) + ( ( i · ( 0 −ℝ 𝑦 ) ) + ( 0 −ℝ 𝑥 ) ) ) = 0 ) |
| 40 |
12 15 35
|
addassd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( i · ( 0 −ℝ 𝑦 ) ) + ( 0 −ℝ 𝑥 ) ) + ( 𝑥 + ( i · 𝑦 ) ) ) = ( ( i · ( 0 −ℝ 𝑦 ) ) + ( ( 0 −ℝ 𝑥 ) + ( 𝑥 + ( i · 𝑦 ) ) ) ) ) |
| 41 |
|
renegid2 |
⊢ ( 𝑥 ∈ ℝ → ( ( 0 −ℝ 𝑥 ) + 𝑥 ) = 0 ) |
| 42 |
41
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 0 −ℝ 𝑥 ) + 𝑥 ) = 0 ) |
| 43 |
42
|
oveq1d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( 0 −ℝ 𝑥 ) + 𝑥 ) + ( i · 𝑦 ) ) = ( 0 + ( i · 𝑦 ) ) ) |
| 44 |
15 18 21
|
addassd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( 0 −ℝ 𝑥 ) + 𝑥 ) + ( i · 𝑦 ) ) = ( ( 0 −ℝ 𝑥 ) + ( 𝑥 + ( i · 𝑦 ) ) ) ) |
| 45 |
|
sn-addlid |
⊢ ( ( i · 𝑦 ) ∈ ℂ → ( 0 + ( i · 𝑦 ) ) = ( i · 𝑦 ) ) |
| 46 |
21 45
|
syl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 0 + ( i · 𝑦 ) ) = ( i · 𝑦 ) ) |
| 47 |
43 44 46
|
3eqtr3rd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( i · 𝑦 ) = ( ( 0 −ℝ 𝑥 ) + ( 𝑥 + ( i · 𝑦 ) ) ) ) |
| 48 |
47
|
oveq2d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( i · ( 0 −ℝ 𝑦 ) ) + ( i · 𝑦 ) ) = ( ( i · ( 0 −ℝ 𝑦 ) ) + ( ( 0 −ℝ 𝑥 ) + ( 𝑥 + ( i · 𝑦 ) ) ) ) ) |
| 49 |
8 10 19
|
adddid |
⊢ ( 𝑦 ∈ ℝ → ( i · ( ( 0 −ℝ 𝑦 ) + 𝑦 ) ) = ( ( i · ( 0 −ℝ 𝑦 ) ) + ( i · 𝑦 ) ) ) |
| 50 |
|
renegid2 |
⊢ ( 𝑦 ∈ ℝ → ( ( 0 −ℝ 𝑦 ) + 𝑦 ) = 0 ) |
| 51 |
50
|
oveq2d |
⊢ ( 𝑦 ∈ ℝ → ( i · ( ( 0 −ℝ 𝑦 ) + 𝑦 ) ) = ( i · 0 ) ) |
| 52 |
51 26
|
eqtrdi |
⊢ ( 𝑦 ∈ ℝ → ( i · ( ( 0 −ℝ 𝑦 ) + 𝑦 ) ) = 0 ) |
| 53 |
49 52
|
eqtr3d |
⊢ ( 𝑦 ∈ ℝ → ( ( i · ( 0 −ℝ 𝑦 ) ) + ( i · 𝑦 ) ) = 0 ) |
| 54 |
53
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( i · ( 0 −ℝ 𝑦 ) ) + ( i · 𝑦 ) ) = 0 ) |
| 55 |
40 48 54
|
3eqtr2d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( i · ( 0 −ℝ 𝑦 ) ) + ( 0 −ℝ 𝑥 ) ) + ( 𝑥 + ( i · 𝑦 ) ) ) = 0 ) |
| 56 |
39 55
|
jca |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( 𝑥 + ( i · 𝑦 ) ) + ( ( i · ( 0 −ℝ 𝑦 ) ) + ( 0 −ℝ 𝑥 ) ) ) = 0 ∧ ( ( ( i · ( 0 −ℝ 𝑦 ) ) + ( 0 −ℝ 𝑥 ) ) + ( 𝑥 + ( i · 𝑦 ) ) ) = 0 ) ) |
| 57 |
6 16 56
|
rspcedvdw |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ∃ 𝑏 ∈ ℂ ( ( ( 𝑥 + ( i · 𝑦 ) ) + 𝑏 ) = 0 ∧ ( 𝑏 + ( 𝑥 + ( i · 𝑦 ) ) ) = 0 ) ) |
| 58 |
57
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ∃ 𝑏 ∈ ℂ ( ( ( 𝑥 + ( i · 𝑦 ) ) + 𝑏 ) = 0 ∧ ( 𝑏 + ( 𝑥 + ( i · 𝑦 ) ) ) = 0 ) ) |
| 59 |
|
oveq1 |
⊢ ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( 𝐴 + 𝑏 ) = ( ( 𝑥 + ( i · 𝑦 ) ) + 𝑏 ) ) |
| 60 |
59
|
eqeq1d |
⊢ ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( ( 𝐴 + 𝑏 ) = 0 ↔ ( ( 𝑥 + ( i · 𝑦 ) ) + 𝑏 ) = 0 ) ) |
| 61 |
|
oveq2 |
⊢ ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( 𝑏 + 𝐴 ) = ( 𝑏 + ( 𝑥 + ( i · 𝑦 ) ) ) ) |
| 62 |
61
|
eqeq1d |
⊢ ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( ( 𝑏 + 𝐴 ) = 0 ↔ ( 𝑏 + ( 𝑥 + ( i · 𝑦 ) ) ) = 0 ) ) |
| 63 |
60 62
|
anbi12d |
⊢ ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( ( ( 𝐴 + 𝑏 ) = 0 ∧ ( 𝑏 + 𝐴 ) = 0 ) ↔ ( ( ( 𝑥 + ( i · 𝑦 ) ) + 𝑏 ) = 0 ∧ ( 𝑏 + ( 𝑥 + ( i · 𝑦 ) ) ) = 0 ) ) ) |
| 64 |
63
|
rexbidv |
⊢ ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( ∃ 𝑏 ∈ ℂ ( ( 𝐴 + 𝑏 ) = 0 ∧ ( 𝑏 + 𝐴 ) = 0 ) ↔ ∃ 𝑏 ∈ ℂ ( ( ( 𝑥 + ( i · 𝑦 ) ) + 𝑏 ) = 0 ∧ ( 𝑏 + ( 𝑥 + ( i · 𝑦 ) ) ) = 0 ) ) ) |
| 65 |
58 64
|
syl5ibrcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ∃ 𝑏 ∈ ℂ ( ( 𝐴 + 𝑏 ) = 0 ∧ ( 𝑏 + 𝐴 ) = 0 ) ) ) |
| 66 |
65
|
rexlimdvva |
⊢ ( 𝐴 ∈ ℂ → ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ∃ 𝑏 ∈ ℂ ( ( 𝐴 + 𝑏 ) = 0 ∧ ( 𝑏 + 𝐴 ) = 0 ) ) ) |
| 67 |
1 66
|
mpd |
⊢ ( 𝐴 ∈ ℂ → ∃ 𝑏 ∈ ℂ ( ( 𝐴 + 𝑏 ) = 0 ∧ ( 𝑏 + 𝐴 ) = 0 ) ) |