Metamath Proof Explorer


Theorem sn-negex12

Description: A combination of cnegex and cnegex2 , this proof takes cnre A = r +i x. s and shows that i x. -u s + -u r is both a left and right inverse. (Contributed by SN, 5-May-2024)

Ref Expression
Assertion sn-negex12 AbA+b=0b+A=0

Proof

Step Hyp Ref Expression
1 ax-icn i
2 1 a1i yi
3 rernegcl y0-y
4 3 recnd y0-y
5 2 4 mulcld yi0-y
6 5 adantl xyi0-y
7 rernegcl x0-x
8 7 recnd x0-x
9 8 adantr xy0-x
10 6 9 addcld xyi0-y+0-x
11 10 adantl Axyi0-y+0-x
12 eqeq1 b=i0-y+0-xb=i0-y+0-xi0-y+0-x=i0-y+0-x
13 12 adantl Axyb=i0-y+0-xb=i0-y+0-xi0-y+0-x=i0-y+0-x
14 eqidd Axyi0-y+0-x=i0-y+0-x
15 11 13 14 rspcedvd Axybb=i0-y+0-x
16 15 ralrimivva Axybb=i0-y+0-x
17 cnre AxyA=x+iy
18 16 17 r19.29d2r Axybb=i0-y+0-xA=x+iy
19 oveq1 A=x+iyA+i0-y=x+iy+i0-y
20 19 adantl AxyA=x+iyA+i0-y=x+iy+i0-y
21 recn xx
22 21 adantr xyx
23 1 a1i xyi
24 recn yy
25 24 adantl xyy
26 23 25 mulcld xyiy
27 22 26 6 addassd xyx+iy+i0-y=x+iy+i0-y
28 renegid yy+0-y=0
29 28 oveq2d yiy+0-y=i0
30 2 24 4 adddid yiy+0-y=iy+i0-y
31 sn-it0e0 i0=0
32 31 a1i yi0=0
33 29 30 32 3eqtr3d yiy+i0-y=0
34 33 oveq2d yx+iy+i0-y=x+0
35 34 adantl xyx+iy+i0-y=x+0
36 readdrid xx+0=x
37 36 adantr xyx+0=x
38 27 35 37 3eqtrd xyx+iy+i0-y=x
39 38 ad2antlr AxyA=x+iyx+iy+i0-y=x
40 20 39 eqtrd AxyA=x+iyA+i0-y=x
41 40 oveq1d AxyA=x+iyA+i0-y+0-x=x+0-x
42 simpll AxyA=x+iyA
43 6 ad2antlr AxyA=x+iyi0-y
44 9 ad2antlr AxyA=x+iy0-x
45 42 43 44 addassd AxyA=x+iyA+i0-y+0-x=A+i0-y+0-x
46 renegid xx+0-x=0
47 46 adantr xyx+0-x=0
48 47 ad2antlr AxyA=x+iyx+0-x=0
49 41 45 48 3eqtr3d AxyA=x+iyA+i0-y+0-x=0
50 oveq2 A=x+iyi0-y+0-x+A=i0-y+0-x+x+iy
51 22 26 addcld xyx+iy
52 6 9 51 addassd xyi0-y+0-x+x+iy=i0-y+0-x+x+iy
53 9 22 26 addassd xy0-x+x+iy=0-x+x+iy
54 53 oveq2d xyi0-y+0-x+x+iy=i0-y+0-x+x+iy
55 renegid2 x0-x+x=0
56 55 adantr xy0-x+x=0
57 56 oveq1d xy0-x+x+iy=0+iy
58 sn-addlid iy0+iy=iy
59 26 58 syl xy0+iy=iy
60 57 59 eqtrd xy0-x+x+iy=iy
61 60 oveq2d xyi0-y+0-x+x+iy=i0-y+iy
62 4 adantl xy0-y
63 23 62 25 adddid xyi0-y+y=i0-y+iy
64 renegid2 y0-y+y=0
65 64 adantl xy0-y+y=0
66 65 oveq2d xyi0-y+y=i0
67 66 31 eqtrdi xyi0-y+y=0
68 61 63 67 3eqtr2d xyi0-y+0-x+x+iy=0
69 52 54 68 3eqtr2d xyi0-y+0-x+x+iy=0
70 69 adantl Axyi0-y+0-x+x+iy=0
71 50 70 sylan9eqr AxyA=x+iyi0-y+0-x+A=0
72 49 71 jca AxyA=x+iyA+i0-y+0-x=0i0-y+0-x+A=0
73 oveq2 b=i0-y+0-xA+b=A+i0-y+0-x
74 73 eqeq1d b=i0-y+0-xA+b=0A+i0-y+0-x=0
75 oveq1 b=i0-y+0-xb+A=i0-y+0-x+A
76 75 eqeq1d b=i0-y+0-xb+A=0i0-y+0-x+A=0
77 74 76 anbi12d b=i0-y+0-xA+b=0b+A=0A+i0-y+0-x=0i0-y+0-x+A=0
78 72 77 syl5ibrcom AxyA=x+iyb=i0-y+0-xA+b=0b+A=0
79 78 reximdv AxyA=x+iybb=i0-y+0-xbA+b=0b+A=0
80 79 expimpd AxyA=x+iybb=i0-y+0-xbA+b=0b+A=0
81 80 ancomsd Axybb=i0-y+0-xA=x+iybA+b=0b+A=0
82 81 rexlimdvva Axybb=i0-y+0-xA=x+iybA+b=0b+A=0
83 18 82 mpd AbA+b=0b+A=0