Step |
Hyp |
Ref |
Expression |
1 |
|
ax-icn |
|
2 |
1
|
a1i |
|
3 |
|
rernegcl |
|
4 |
3
|
recnd |
|
5 |
2 4
|
mulcld |
|
6 |
5
|
adantl |
|
7 |
|
rernegcl |
|
8 |
7
|
recnd |
|
9 |
8
|
adantr |
|
10 |
6 9
|
addcld |
|
11 |
10
|
adantl |
|
12 |
|
eqeq1 |
|
13 |
12
|
adantl |
|
14 |
|
eqidd |
|
15 |
11 13 14
|
rspcedvd |
|
16 |
15
|
ralrimivva |
|
17 |
|
cnre |
|
18 |
16 17
|
r19.29d2r |
|
19 |
|
oveq1 |
|
20 |
19
|
adantl |
|
21 |
|
recn |
|
22 |
21
|
adantr |
|
23 |
1
|
a1i |
|
24 |
|
recn |
|
25 |
24
|
adantl |
|
26 |
23 25
|
mulcld |
|
27 |
22 26 6
|
addassd |
|
28 |
|
renegid |
|
29 |
28
|
oveq2d |
|
30 |
2 24 4
|
adddid |
|
31 |
|
sn-it0e0 |
|
32 |
31
|
a1i |
|
33 |
29 30 32
|
3eqtr3d |
|
34 |
33
|
oveq2d |
|
35 |
34
|
adantl |
|
36 |
|
readdid1 |
|
37 |
36
|
adantr |
|
38 |
27 35 37
|
3eqtrd |
|
39 |
38
|
ad2antlr |
|
40 |
20 39
|
eqtrd |
|
41 |
40
|
oveq1d |
|
42 |
|
simpll |
|
43 |
6
|
ad2antlr |
|
44 |
9
|
ad2antlr |
|
45 |
42 43 44
|
addassd |
|
46 |
|
renegid |
|
47 |
46
|
adantr |
|
48 |
47
|
ad2antlr |
|
49 |
41 45 48
|
3eqtr3d |
|
50 |
|
oveq2 |
|
51 |
22 26
|
addcld |
|
52 |
6 9 51
|
addassd |
|
53 |
9 22 26
|
addassd |
|
54 |
53
|
oveq2d |
|
55 |
|
renegid2 |
|
56 |
55
|
adantr |
|
57 |
56
|
oveq1d |
|
58 |
|
sn-addid2 |
|
59 |
26 58
|
syl |
|
60 |
57 59
|
eqtrd |
|
61 |
60
|
oveq2d |
|
62 |
4
|
adantl |
|
63 |
23 62 25
|
adddid |
|
64 |
|
renegid2 |
|
65 |
64
|
adantl |
|
66 |
65
|
oveq2d |
|
67 |
66 31
|
eqtrdi |
|
68 |
61 63 67
|
3eqtr2d |
|
69 |
52 54 68
|
3eqtr2d |
|
70 |
69
|
adantl |
|
71 |
50 70
|
sylan9eqr |
|
72 |
49 71
|
jca |
|
73 |
|
oveq2 |
|
74 |
73
|
eqeq1d |
|
75 |
|
oveq1 |
|
76 |
75
|
eqeq1d |
|
77 |
74 76
|
anbi12d |
|
78 |
72 77
|
syl5ibrcom |
|
79 |
78
|
reximdv |
|
80 |
79
|
expimpd |
|
81 |
80
|
ancomsd |
|
82 |
81
|
rexlimdvva |
|
83 |
18 82
|
mpd |
|