Description: subcl without ax-mulcom . (Contributed by SN, 5-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sn-subcl | |- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subval | |- ( ( A e. CC /\ B e. CC ) -> ( A - B ) = ( iota_ x e. CC ( B + x ) = A ) ) |
|
| 2 | sn-subeu | |- ( ( B e. CC /\ A e. CC ) -> E! x e. CC ( B + x ) = A ) |
|
| 3 | 2 | ancoms | |- ( ( A e. CC /\ B e. CC ) -> E! x e. CC ( B + x ) = A ) |
| 4 | riotacl | |- ( E! x e. CC ( B + x ) = A -> ( iota_ x e. CC ( B + x ) = A ) e. CC ) |
|
| 5 | 3 4 | syl | |- ( ( A e. CC /\ B e. CC ) -> ( iota_ x e. CC ( B + x ) = A ) e. CC ) |
| 6 | 1 5 | eqeltrd | |- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |