Metamath Proof Explorer


Theorem sn-subcl

Description: subcl without ax-mulcom . (Contributed by SN, 5-May-2024)

Ref Expression
Assertion sn-subcl
|- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC )

Proof

Step Hyp Ref Expression
1 subval
 |-  ( ( A e. CC /\ B e. CC ) -> ( A - B ) = ( iota_ x e. CC ( B + x ) = A ) )
2 sn-subeu
 |-  ( ( B e. CC /\ A e. CC ) -> E! x e. CC ( B + x ) = A )
3 2 ancoms
 |-  ( ( A e. CC /\ B e. CC ) -> E! x e. CC ( B + x ) = A )
4 riotacl
 |-  ( E! x e. CC ( B + x ) = A -> ( iota_ x e. CC ( B + x ) = A ) e. CC )
5 3 4 syl
 |-  ( ( A e. CC /\ B e. CC ) -> ( iota_ x e. CC ( B + x ) = A ) e. CC )
6 1 5 eqeltrd
 |-  ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC )