Metamath Proof Explorer


Theorem sn-subcl

Description: subcl without ax-mulcom . (Contributed by SN, 5-May-2024)

Ref Expression
Assertion sn-subcl ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴𝐵 ) ∈ ℂ )

Proof

Step Hyp Ref Expression
1 subval ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴𝐵 ) = ( 𝑥 ∈ ℂ ( 𝐵 + 𝑥 ) = 𝐴 ) )
2 sn-subeu ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ∃! 𝑥 ∈ ℂ ( 𝐵 + 𝑥 ) = 𝐴 )
3 2 ancoms ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ∃! 𝑥 ∈ ℂ ( 𝐵 + 𝑥 ) = 𝐴 )
4 riotacl ( ∃! 𝑥 ∈ ℂ ( 𝐵 + 𝑥 ) = 𝐴 → ( 𝑥 ∈ ℂ ( 𝐵 + 𝑥 ) = 𝐴 ) ∈ ℂ )
5 3 4 syl ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝑥 ∈ ℂ ( 𝐵 + 𝑥 ) = 𝐴 ) ∈ ℂ )
6 1 5 eqeltrd ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴𝐵 ) ∈ ℂ )