Description: Set exponentiation: a singleton to any set is equinumerous to ordinal 1. (Proposed by BJ, 17-Jul-2022.) (Contributed by AV, 17-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snmapen1 | |- ( ( A e. V /\ B e. W ) -> ( { A } ^m B ) ~~ 1o ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snmapen | |- ( ( A e. V /\ B e. W ) -> ( { A } ^m B ) ~~ { A } ) |
|
| 2 | ensn1g | |- ( A e. V -> { A } ~~ 1o ) |
|
| 3 | 2 | adantr | |- ( ( A e. V /\ B e. W ) -> { A } ~~ 1o ) |
| 4 | entr | |- ( ( ( { A } ^m B ) ~~ { A } /\ { A } ~~ 1o ) -> ( { A } ^m B ) ~~ 1o ) |
|
| 5 | 1 3 4 | syl2anc | |- ( ( A e. V /\ B e. W ) -> ( { A } ^m B ) ~~ 1o ) |