Metamath Proof Explorer


Theorem snmapen1

Description: Set exponentiation: a singleton to any set is equinumerous to ordinal 1. (Proposed by BJ, 17-Jul-2022.) (Contributed by AV, 17-Jul-2022)

Ref Expression
Assertion snmapen1
|- ( ( A e. V /\ B e. W ) -> ( { A } ^m B ) ~~ 1o )

Proof

Step Hyp Ref Expression
1 snmapen
 |-  ( ( A e. V /\ B e. W ) -> ( { A } ^m B ) ~~ { A } )
2 ensn1g
 |-  ( A e. V -> { A } ~~ 1o )
3 2 adantr
 |-  ( ( A e. V /\ B e. W ) -> { A } ~~ 1o )
4 entr
 |-  ( ( ( { A } ^m B ) ~~ { A } /\ { A } ~~ 1o ) -> ( { A } ^m B ) ~~ 1o )
5 1 3 4 syl2anc
 |-  ( ( A e. V /\ B e. W ) -> ( { A } ^m B ) ~~ 1o )