Metamath Proof Explorer


Theorem snsslVD

Description: Virtual deduction proof of snssl . (Contributed by Alan Sare, 25-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis snsslVD.1
|- A e. _V
Assertion snsslVD
|- ( { A } C_ B -> A e. B )

Proof

Step Hyp Ref Expression
1 snsslVD.1
 |-  A e. _V
2 idn1
 |-  (. { A } C_ B ->. { A } C_ B ).
3 1 snid
 |-  A e. { A }
4 ssel2
 |-  ( ( { A } C_ B /\ A e. { A } ) -> A e. B )
5 2 3 4 e10an
 |-  (. { A } C_ B ->. A e. B ).
6 5 in1
 |-  ( { A } C_ B -> A e. B )