Description: Virtual deduction proof of snssl . (Contributed by Alan Sare, 25-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | snsslVD.1 | |- A e. _V |
|
Assertion | snsslVD | |- ( { A } C_ B -> A e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snsslVD.1 | |- A e. _V |
|
2 | idn1 | |- (. { A } C_ B ->. { A } C_ B ). |
|
3 | 1 | snid | |- A e. { A } |
4 | ssel2 | |- ( ( { A } C_ B /\ A e. { A } ) -> A e. B ) |
|
5 | 2 3 4 | e10an | |- (. { A } C_ B ->. A e. B ). |
6 | 5 | in1 | |- ( { A } C_ B -> A e. B ) |