Metamath Proof Explorer


Theorem snsslVD

Description: Virtual deduction proof of snssl . (Contributed by Alan Sare, 25-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis snsslVD.1 𝐴 ∈ V
Assertion snsslVD ( { 𝐴 } ⊆ 𝐵𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 snsslVD.1 𝐴 ∈ V
2 idn1 (    { 𝐴 } ⊆ 𝐵    ▶    { 𝐴 } ⊆ 𝐵    )
3 1 snid 𝐴 ∈ { 𝐴 }
4 ssel2 ( ( { 𝐴 } ⊆ 𝐵𝐴 ∈ { 𝐴 } ) → 𝐴𝐵 )
5 2 3 4 e10an (    { 𝐴 } ⊆ 𝐵    ▶    𝐴𝐵    )
6 5 in1 ( { 𝐴 } ⊆ 𝐵𝐴𝐵 )