Metamath Proof Explorer
Description: Virtual deduction proof of snssl . (Contributed by Alan Sare, 25-Aug-2011) (Proof modification is discouraged.)
(New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypothesis |
snsslVD.1 |
⊢ 𝐴 ∈ V |
|
Assertion |
snsslVD |
⊢ ( { 𝐴 } ⊆ 𝐵 → 𝐴 ∈ 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
snsslVD.1 |
⊢ 𝐴 ∈ V |
2 |
|
idn1 |
⊢ ( { 𝐴 } ⊆ 𝐵 ▶ { 𝐴 } ⊆ 𝐵 ) |
3 |
1
|
snid |
⊢ 𝐴 ∈ { 𝐴 } |
4 |
|
ssel2 |
⊢ ( ( { 𝐴 } ⊆ 𝐵 ∧ 𝐴 ∈ { 𝐴 } ) → 𝐴 ∈ 𝐵 ) |
5 |
2 3 4
|
e10an |
⊢ ( { 𝐴 } ⊆ 𝐵 ▶ 𝐴 ∈ 𝐵 ) |
6 |
5
|
in1 |
⊢ ( { 𝐴 } ⊆ 𝐵 → 𝐴 ∈ 𝐵 ) |