| Step |
Hyp |
Ref |
Expression |
| 1 |
|
spcimgfi1.1 |
|- F/ x ps |
| 2 |
|
spcimgfi1.2 |
|- F/_ x A |
| 3 |
|
elex |
|- ( A e. B -> A e. _V ) |
| 4 |
2
|
issetf |
|- ( A e. _V <-> E. x x = A ) |
| 5 |
|
exim |
|- ( A. x ( x = A -> ( ph -> ps ) ) -> ( E. x x = A -> E. x ( ph -> ps ) ) ) |
| 6 |
4 5
|
biimtrid |
|- ( A. x ( x = A -> ( ph -> ps ) ) -> ( A e. _V -> E. x ( ph -> ps ) ) ) |
| 7 |
1
|
19.36 |
|- ( E. x ( ph -> ps ) <-> ( A. x ph -> ps ) ) |
| 8 |
6 7
|
imbitrdi |
|- ( A. x ( x = A -> ( ph -> ps ) ) -> ( A e. _V -> ( A. x ph -> ps ) ) ) |
| 9 |
3 8
|
syl5 |
|- ( A. x ( x = A -> ( ph -> ps ) ) -> ( A e. B -> ( A. x ph -> ps ) ) ) |