Description: Obsolete version of spcimgfi1 as of 27-Jul-2025. (Contributed by Mario Carneiro, 4-Jan-2017) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spcimgfi1.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| spcimgfi1.2 | ⊢ Ⅎ 𝑥 𝐴 | ||
| Assertion | spcimgfi1OLD | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) → ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 𝜑 → 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcimgfi1.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 2 | spcimgfi1.2 | ⊢ Ⅎ 𝑥 𝐴 | |
| 3 | elex | ⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ∈ V ) | |
| 4 | 2 | issetf | ⊢ ( 𝐴 ∈ V ↔ ∃ 𝑥 𝑥 = 𝐴 ) |
| 5 | exim | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) → ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 ( 𝜑 → 𝜓 ) ) ) | |
| 6 | 4 5 | biimtrid | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) → ( 𝐴 ∈ V → ∃ 𝑥 ( 𝜑 → 𝜓 ) ) ) |
| 7 | 1 | 19.36 | ⊢ ( ∃ 𝑥 ( 𝜑 → 𝜓 ) ↔ ( ∀ 𝑥 𝜑 → 𝜓 ) ) |
| 8 | 6 7 | imbitrdi | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) → ( 𝐴 ∈ V → ( ∀ 𝑥 𝜑 → 𝜓 ) ) ) |
| 9 | 3 8 | syl5 | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) → ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 𝜑 → 𝜓 ) ) ) |