Metamath Proof Explorer


Theorem spfalw

Description: Version of sp when ph is false. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 23-Apr-2017) (Proof shortened by Wolf Lammen, 25-Dec-2017)

Ref Expression
Hypothesis spfalw.1
|- -. ph
Assertion spfalw
|- ( A. x ph -> ph )

Proof

Step Hyp Ref Expression
1 spfalw.1
 |-  -. ph
2 1 hbth
 |-  ( -. ph -> A. x -. ph )
3 2 spnfw
 |-  ( A. x ph -> ph )