Metamath Proof Explorer


Theorem sprsymrelfv

Description: The value of the function F which maps a subset of the set of pairs over a fixed set V to the relation relating two elements of the set V iff they are in a pair of the subset. (Contributed by AV, 19-Nov-2021)

Ref Expression
Hypotheses sprsymrelf.p
|- P = ~P ( Pairs ` V )
sprsymrelf.r
|- R = { r e. ~P ( V X. V ) | A. x e. V A. y e. V ( x r y <-> y r x ) }
sprsymrelf.f
|- F = ( p e. P |-> { <. x , y >. | E. c e. p c = { x , y } } )
Assertion sprsymrelfv
|- ( X e. P -> ( F ` X ) = { <. x , y >. | E. c e. X c = { x , y } } )

Proof

Step Hyp Ref Expression
1 sprsymrelf.p
 |-  P = ~P ( Pairs ` V )
2 sprsymrelf.r
 |-  R = { r e. ~P ( V X. V ) | A. x e. V A. y e. V ( x r y <-> y r x ) }
3 sprsymrelf.f
 |-  F = ( p e. P |-> { <. x , y >. | E. c e. p c = { x , y } } )
4 rexeq
 |-  ( p = X -> ( E. c e. p c = { x , y } <-> E. c e. X c = { x , y } ) )
5 4 opabbidv
 |-  ( p = X -> { <. x , y >. | E. c e. p c = { x , y } } = { <. x , y >. | E. c e. X c = { x , y } } )
6 id
 |-  ( X e. P -> X e. P )
7 elpwi
 |-  ( X e. ~P ( Pairs ` V ) -> X C_ ( Pairs ` V ) )
8 7 1 eleq2s
 |-  ( X e. P -> X C_ ( Pairs ` V ) )
9 sprsymrelfvlem
 |-  ( X C_ ( Pairs ` V ) -> { <. x , y >. | E. c e. X c = { x , y } } e. ~P ( V X. V ) )
10 8 9 syl
 |-  ( X e. P -> { <. x , y >. | E. c e. X c = { x , y } } e. ~P ( V X. V ) )
11 3 5 6 10 fvmptd3
 |-  ( X e. P -> ( F ` X ) = { <. x , y >. | E. c e. X c = { x , y } } )