Metamath Proof Explorer


Theorem sprsymrelfv

Description: The value of the function F which maps a subset of the set of pairs over a fixed set V to the relation relating two elements of the set V iff they are in a pair of the subset. (Contributed by AV, 19-Nov-2021)

Ref Expression
Hypotheses sprsymrelf.p P = 𝒫 Pairs V
sprsymrelf.r R = r 𝒫 V × V | x V y V x r y y r x
sprsymrelf.f F = p P x y | c p c = x y
Assertion sprsymrelfv X P F X = x y | c X c = x y

Proof

Step Hyp Ref Expression
1 sprsymrelf.p P = 𝒫 Pairs V
2 sprsymrelf.r R = r 𝒫 V × V | x V y V x r y y r x
3 sprsymrelf.f F = p P x y | c p c = x y
4 rexeq p = X c p c = x y c X c = x y
5 4 opabbidv p = X x y | c p c = x y = x y | c X c = x y
6 id X P X P
7 elpwi X 𝒫 Pairs V X Pairs V
8 7 1 eleq2s X P X Pairs V
9 sprsymrelfvlem X Pairs V x y | c X c = x y 𝒫 V × V
10 8 9 syl X P x y | c X c = x y 𝒫 V × V
11 3 5 6 10 fvmptd3 X P F X = x y | c X c = x y