| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0re |  |-  0 e. RR | 
						
							| 2 |  | ltle |  |-  ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A -> 0 <_ A ) ) | 
						
							| 3 | 1 2 | mpan |  |-  ( A e. RR -> ( 0 < A -> 0 <_ A ) ) | 
						
							| 4 | 3 | imp |  |-  ( ( A e. RR /\ 0 < A ) -> 0 <_ A ) | 
						
							| 5 |  | resqrtcl |  |-  ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` A ) e. RR ) | 
						
							| 6 | 4 5 | syldan |  |-  ( ( A e. RR /\ 0 < A ) -> ( sqrt ` A ) e. RR ) | 
						
							| 7 |  | sqrtge0 |  |-  ( ( A e. RR /\ 0 <_ A ) -> 0 <_ ( sqrt ` A ) ) | 
						
							| 8 | 4 7 | syldan |  |-  ( ( A e. RR /\ 0 < A ) -> 0 <_ ( sqrt ` A ) ) | 
						
							| 9 |  | gt0ne0 |  |-  ( ( A e. RR /\ 0 < A ) -> A =/= 0 ) | 
						
							| 10 |  | sq0i |  |-  ( ( sqrt ` A ) = 0 -> ( ( sqrt ` A ) ^ 2 ) = 0 ) | 
						
							| 11 |  | resqrtth |  |-  ( ( A e. RR /\ 0 <_ A ) -> ( ( sqrt ` A ) ^ 2 ) = A ) | 
						
							| 12 | 4 11 | syldan |  |-  ( ( A e. RR /\ 0 < A ) -> ( ( sqrt ` A ) ^ 2 ) = A ) | 
						
							| 13 | 12 | eqeq1d |  |-  ( ( A e. RR /\ 0 < A ) -> ( ( ( sqrt ` A ) ^ 2 ) = 0 <-> A = 0 ) ) | 
						
							| 14 | 10 13 | imbitrid |  |-  ( ( A e. RR /\ 0 < A ) -> ( ( sqrt ` A ) = 0 -> A = 0 ) ) | 
						
							| 15 | 14 | necon3d |  |-  ( ( A e. RR /\ 0 < A ) -> ( A =/= 0 -> ( sqrt ` A ) =/= 0 ) ) | 
						
							| 16 | 9 15 | mpd |  |-  ( ( A e. RR /\ 0 < A ) -> ( sqrt ` A ) =/= 0 ) | 
						
							| 17 | 6 8 16 | ne0gt0d |  |-  ( ( A e. RR /\ 0 < A ) -> 0 < ( sqrt ` A ) ) |