Metamath Proof Explorer


Theorem sqrtmsq2i

Description: Relationship between square root and squares. (Contributed by NM, 31-Jul-1999)

Ref Expression
Hypotheses sqrtthi.1
|- A e. RR
sqr11.1
|- B e. RR
Assertion sqrtmsq2i
|- ( ( 0 <_ A /\ 0 <_ B ) -> ( ( sqrt ` A ) = B <-> A = ( B x. B ) ) )

Proof

Step Hyp Ref Expression
1 sqrtthi.1
 |-  A e. RR
2 sqr11.1
 |-  B e. RR
3 sqrtsq2
 |-  ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( sqrt ` A ) = B <-> A = ( B ^ 2 ) ) )
4 2 3 mpanr1
 |-  ( ( ( A e. RR /\ 0 <_ A ) /\ 0 <_ B ) -> ( ( sqrt ` A ) = B <-> A = ( B ^ 2 ) ) )
5 1 4 mpanl1
 |-  ( ( 0 <_ A /\ 0 <_ B ) -> ( ( sqrt ` A ) = B <-> A = ( B ^ 2 ) ) )
6 2 recni
 |-  B e. CC
7 6 sqvali
 |-  ( B ^ 2 ) = ( B x. B )
8 7 eqeq2i
 |-  ( A = ( B ^ 2 ) <-> A = ( B x. B ) )
9 5 8 bitrdi
 |-  ( ( 0 <_ A /\ 0 <_ B ) -> ( ( sqrt ` A ) = B <-> A = ( B x. B ) ) )