Description: Class abstractions in a subclass relationship, closed form. One direction of ss2ab using fewer axioms. (Contributed by SN, 22-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ss2ab1 | |- ( A. x ( ph -> ps ) -> { x | ph } C_ { x | ps } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | spsbim | |- ( A. x ( ph -> ps ) -> ( [ t / x ] ph -> [ t / x ] ps ) ) | |
| 2 | df-clab |  |-  ( t e. { x | ph } <-> [ t / x ] ph ) | |
| 3 | df-clab |  |-  ( t e. { x | ps } <-> [ t / x ] ps ) | |
| 4 | 1 2 3 | 3imtr4g |  |-  ( A. x ( ph -> ps ) -> ( t e. { x | ph } -> t e. { x | ps } ) ) | 
| 5 | 4 | ssrdv |  |-  ( A. x ( ph -> ps ) -> { x | ph } C_ { x | ps } ) |