Description: A subclass missing a member is a proper subclass. (Contributed by NM, 12-Jan-2002)
Ref | Expression | ||
---|---|---|---|
Assertion | ssnelpss | |- ( A C_ B -> ( ( C e. B /\ -. C e. A ) -> A C. B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelneq2 | |- ( ( C e. B /\ -. C e. A ) -> -. B = A ) |
|
2 | eqcom | |- ( B = A <-> A = B ) |
|
3 | 1 2 | sylnib | |- ( ( C e. B /\ -. C e. A ) -> -. A = B ) |
4 | dfpss2 | |- ( A C. B <-> ( A C_ B /\ -. A = B ) ) |
|
5 | 4 | baibr | |- ( A C_ B -> ( -. A = B <-> A C. B ) ) |
6 | 3 5 | syl5ib | |- ( A C_ B -> ( ( C e. B /\ -. C e. A ) -> A C. B ) ) |