Metamath Proof Explorer


Theorem ssres

Description: Subclass theorem for restriction. (Contributed by NM, 16-Aug-1994)

Ref Expression
Assertion ssres
|- ( A C_ B -> ( A |` C ) C_ ( B |` C ) )

Proof

Step Hyp Ref Expression
1 ssrin
 |-  ( A C_ B -> ( A i^i ( C X. _V ) ) C_ ( B i^i ( C X. _V ) ) )
2 df-res
 |-  ( A |` C ) = ( A i^i ( C X. _V ) )
3 df-res
 |-  ( B |` C ) = ( B i^i ( C X. _V ) )
4 1 2 3 3sstr4g
 |-  ( A C_ B -> ( A |` C ) C_ ( B |` C ) )