Description: Subclass theorem for restriction. (Contributed by NM, 16-Aug-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | ssres | |- ( A C_ B -> ( A |` C ) C_ ( B |` C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrin | |- ( A C_ B -> ( A i^i ( C X. _V ) ) C_ ( B i^i ( C X. _V ) ) ) |
|
2 | df-res | |- ( A |` C ) = ( A i^i ( C X. _V ) ) |
|
3 | df-res | |- ( B |` C ) = ( B i^i ( C X. _V ) ) |
|
4 | 1 2 3 | 3sstr4g | |- ( A C_ B -> ( A |` C ) C_ ( B |` C ) ) |