Metamath Proof Explorer


Theorem stdpc5t

Description: Closed form of stdpc5 . (Possible to place it before 19.21t and use it to prove 19.21t ). (Contributed by BJ, 15-Sep-2018) (Proof modification is discouraged.)

Ref Expression
Assertion stdpc5t
|- ( F/ x ph -> ( A. x ( ph -> ps ) -> ( ph -> A. x ps ) ) )

Proof

Step Hyp Ref Expression
1 nf5r
 |-  ( F/ x ph -> ( ph -> A. x ph ) )
2 alim
 |-  ( A. x ( ph -> ps ) -> ( A. x ph -> A. x ps ) )
3 1 2 syl9
 |-  ( F/ x ph -> ( A. x ( ph -> ps ) -> ( ph -> A. x ps ) ) )