Metamath Proof Explorer


Theorem bj-stdpc5

Description: More direct proof of stdpc5 . (Contributed by BJ, 15-Sep-2018) (Proof modification is discouraged.)

Ref Expression
Hypothesis bj-stdpc5.1
|- F/ x ph
Assertion bj-stdpc5
|- ( A. x ( ph -> ps ) -> ( ph -> A. x ps ) )

Proof

Step Hyp Ref Expression
1 bj-stdpc5.1
 |-  F/ x ph
2 stdpc5t
 |-  ( F/ x ph -> ( A. x ( ph -> ps ) -> ( ph -> A. x ps ) ) )
3 1 2 ax-mp
 |-  ( A. x ( ph -> ps ) -> ( ph -> A. x ps ) )