Metamath Proof Explorer


Theorem stgrorder

Description: The order of a star graph S_N. (Contributed by AV, 12-Sep-2025)

Ref Expression
Hypotheses stgrvtx0.g
|- G = ( StarGr ` N )
stgrvtx0.v
|- V = ( Vtx ` G )
Assertion stgrorder
|- ( N e. NN0 -> ( # ` V ) = ( N + 1 ) )

Proof

Step Hyp Ref Expression
1 stgrvtx0.g
 |-  G = ( StarGr ` N )
2 stgrvtx0.v
 |-  V = ( Vtx ` G )
3 1 fveq2i
 |-  ( Vtx ` G ) = ( Vtx ` ( StarGr ` N ) )
4 2 3 eqtri
 |-  V = ( Vtx ` ( StarGr ` N ) )
5 stgrvtx
 |-  ( N e. NN0 -> ( Vtx ` ( StarGr ` N ) ) = ( 0 ... N ) )
6 4 5 eqtrid
 |-  ( N e. NN0 -> V = ( 0 ... N ) )
7 6 fveq2d
 |-  ( N e. NN0 -> ( # ` V ) = ( # ` ( 0 ... N ) ) )
8 hashfz0
 |-  ( N e. NN0 -> ( # ` ( 0 ... N ) ) = ( N + 1 ) )
9 7 8 eqtrd
 |-  ( N e. NN0 -> ( # ` V ) = ( N + 1 ) )