Step |
Hyp |
Ref |
Expression |
1 |
|
stgrvtx0.g |
|- G = ( StarGr ` N ) |
2 |
|
stgrvtx0.v |
|- V = ( Vtx ` G ) |
3 |
1 2
|
stgrvtx0 |
|- ( N e. NN0 -> 0 e. V ) |
4 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
5 |
2 4
|
dfnbgr2 |
|- ( 0 e. V -> ( G NeighbVtx 0 ) = { x e. ( V \ { 0 } ) | E. e e. ( Edg ` G ) ( 0 e. e /\ x e. e ) } ) |
6 |
3 5
|
syl |
|- ( N e. NN0 -> ( G NeighbVtx 0 ) = { x e. ( V \ { 0 } ) | E. e e. ( Edg ` G ) ( 0 e. e /\ x e. e ) } ) |
7 |
|
eleq2 |
|- ( e = { 0 , x } -> ( 0 e. e <-> 0 e. { 0 , x } ) ) |
8 |
|
eleq2 |
|- ( e = { 0 , x } -> ( x e. e <-> x e. { 0 , x } ) ) |
9 |
7 8
|
anbi12d |
|- ( e = { 0 , x } -> ( ( 0 e. e /\ x e. e ) <-> ( 0 e. { 0 , x } /\ x e. { 0 , x } ) ) ) |
10 |
|
0elfz |
|- ( N e. NN0 -> 0 e. ( 0 ... N ) ) |
11 |
10
|
adantr |
|- ( ( N e. NN0 /\ x e. ( V \ { 0 } ) ) -> 0 e. ( 0 ... N ) ) |
12 |
|
fz1ssfz0 |
|- ( 1 ... N ) C_ ( 0 ... N ) |
13 |
1
|
fveq2i |
|- ( Vtx ` G ) = ( Vtx ` ( StarGr ` N ) ) |
14 |
2 13
|
eqtri |
|- V = ( Vtx ` ( StarGr ` N ) ) |
15 |
|
stgrvtx |
|- ( N e. NN0 -> ( Vtx ` ( StarGr ` N ) ) = ( 0 ... N ) ) |
16 |
14 15
|
eqtrid |
|- ( N e. NN0 -> V = ( 0 ... N ) ) |
17 |
16
|
difeq1d |
|- ( N e. NN0 -> ( V \ { 0 } ) = ( ( 0 ... N ) \ { 0 } ) ) |
18 |
|
fz0dif1 |
|- ( N e. NN0 -> ( ( 0 ... N ) \ { 0 } ) = ( 1 ... N ) ) |
19 |
18
|
eqimssd |
|- ( N e. NN0 -> ( ( 0 ... N ) \ { 0 } ) C_ ( 1 ... N ) ) |
20 |
17 19
|
eqsstrd |
|- ( N e. NN0 -> ( V \ { 0 } ) C_ ( 1 ... N ) ) |
21 |
20
|
sselda |
|- ( ( N e. NN0 /\ x e. ( V \ { 0 } ) ) -> x e. ( 1 ... N ) ) |
22 |
12 21
|
sselid |
|- ( ( N e. NN0 /\ x e. ( V \ { 0 } ) ) -> x e. ( 0 ... N ) ) |
23 |
11 22
|
prssd |
|- ( ( N e. NN0 /\ x e. ( V \ { 0 } ) ) -> { 0 , x } C_ ( 0 ... N ) ) |
24 |
|
preq2 |
|- ( n = x -> { 0 , n } = { 0 , x } ) |
25 |
24
|
eqeq2d |
|- ( n = x -> ( { 0 , x } = { 0 , n } <-> { 0 , x } = { 0 , x } ) ) |
26 |
|
eqidd |
|- ( ( N e. NN0 /\ x e. ( V \ { 0 } ) ) -> { 0 , x } = { 0 , x } ) |
27 |
25 21 26
|
rspcedvdw |
|- ( ( N e. NN0 /\ x e. ( V \ { 0 } ) ) -> E. n e. ( 1 ... N ) { 0 , x } = { 0 , n } ) |
28 |
1
|
fveq2i |
|- ( Edg ` G ) = ( Edg ` ( StarGr ` N ) ) |
29 |
28
|
eleq2i |
|- ( { 0 , x } e. ( Edg ` G ) <-> { 0 , x } e. ( Edg ` ( StarGr ` N ) ) ) |
30 |
|
stgredgel |
|- ( N e. NN0 -> ( { 0 , x } e. ( Edg ` ( StarGr ` N ) ) <-> ( { 0 , x } C_ ( 0 ... N ) /\ E. n e. ( 1 ... N ) { 0 , x } = { 0 , n } ) ) ) |
31 |
30
|
adantr |
|- ( ( N e. NN0 /\ x e. ( V \ { 0 } ) ) -> ( { 0 , x } e. ( Edg ` ( StarGr ` N ) ) <-> ( { 0 , x } C_ ( 0 ... N ) /\ E. n e. ( 1 ... N ) { 0 , x } = { 0 , n } ) ) ) |
32 |
29 31
|
bitrid |
|- ( ( N e. NN0 /\ x e. ( V \ { 0 } ) ) -> ( { 0 , x } e. ( Edg ` G ) <-> ( { 0 , x } C_ ( 0 ... N ) /\ E. n e. ( 1 ... N ) { 0 , x } = { 0 , n } ) ) ) |
33 |
23 27 32
|
mpbir2and |
|- ( ( N e. NN0 /\ x e. ( V \ { 0 } ) ) -> { 0 , x } e. ( Edg ` G ) ) |
34 |
|
prid2g |
|- ( x e. ( V \ { 0 } ) -> x e. { 0 , x } ) |
35 |
34
|
adantl |
|- ( ( N e. NN0 /\ x e. ( V \ { 0 } ) ) -> x e. { 0 , x } ) |
36 |
|
c0ex |
|- 0 e. _V |
37 |
36
|
prid1 |
|- 0 e. { 0 , x } |
38 |
35 37
|
jctil |
|- ( ( N e. NN0 /\ x e. ( V \ { 0 } ) ) -> ( 0 e. { 0 , x } /\ x e. { 0 , x } ) ) |
39 |
9 33 38
|
rspcedvdw |
|- ( ( N e. NN0 /\ x e. ( V \ { 0 } ) ) -> E. e e. ( Edg ` G ) ( 0 e. e /\ x e. e ) ) |
40 |
39
|
rabeqcda |
|- ( N e. NN0 -> { x e. ( V \ { 0 } ) | E. e e. ( Edg ` G ) ( 0 e. e /\ x e. e ) } = ( V \ { 0 } ) ) |
41 |
6 40
|
eqtrd |
|- ( N e. NN0 -> ( G NeighbVtx 0 ) = ( V \ { 0 } ) ) |