Metamath Proof Explorer


Theorem stgrvtx0

Description: The center ("internal node") of a star graph S_N. (Contributed by AV, 12-Sep-2025)

Ref Expression
Hypotheses stgrvtx0.g
|- G = ( StarGr ` N )
stgrvtx0.v
|- V = ( Vtx ` G )
Assertion stgrvtx0
|- ( N e. NN0 -> 0 e. V )

Proof

Step Hyp Ref Expression
1 stgrvtx0.g
 |-  G = ( StarGr ` N )
2 stgrvtx0.v
 |-  V = ( Vtx ` G )
3 stgrvtx
 |-  ( N e. NN0 -> ( Vtx ` ( StarGr ` N ) ) = ( 0 ... N ) )
4 1 fveq2i
 |-  ( Vtx ` G ) = ( Vtx ` ( StarGr ` N ) )
5 2 4 eqtri
 |-  V = ( Vtx ` ( StarGr ` N ) )
6 5 eqeq1i
 |-  ( V = ( 0 ... N ) <-> ( Vtx ` ( StarGr ` N ) ) = ( 0 ... N ) )
7 0elfz
 |-  ( N e. NN0 -> 0 e. ( 0 ... N ) )
8 eleq2
 |-  ( V = ( 0 ... N ) -> ( 0 e. V <-> 0 e. ( 0 ... N ) ) )
9 7 8 syl5ibrcom
 |-  ( N e. NN0 -> ( V = ( 0 ... N ) -> 0 e. V ) )
10 6 9 biimtrrid
 |-  ( N e. NN0 -> ( ( Vtx ` ( StarGr ` N ) ) = ( 0 ... N ) -> 0 e. V ) )
11 3 10 mpd
 |-  ( N e. NN0 -> 0 e. V )