Step |
Hyp |
Ref |
Expression |
1 |
|
stgrvtx0.g |
⊢ 𝐺 = ( StarGr ‘ 𝑁 ) |
2 |
|
stgrvtx0.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
3 |
|
stgrvtx |
⊢ ( 𝑁 ∈ ℕ0 → ( Vtx ‘ ( StarGr ‘ 𝑁 ) ) = ( 0 ... 𝑁 ) ) |
4 |
1
|
fveq2i |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ ( StarGr ‘ 𝑁 ) ) |
5 |
2 4
|
eqtri |
⊢ 𝑉 = ( Vtx ‘ ( StarGr ‘ 𝑁 ) ) |
6 |
5
|
eqeq1i |
⊢ ( 𝑉 = ( 0 ... 𝑁 ) ↔ ( Vtx ‘ ( StarGr ‘ 𝑁 ) ) = ( 0 ... 𝑁 ) ) |
7 |
|
0elfz |
⊢ ( 𝑁 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑁 ) ) |
8 |
|
eleq2 |
⊢ ( 𝑉 = ( 0 ... 𝑁 ) → ( 0 ∈ 𝑉 ↔ 0 ∈ ( 0 ... 𝑁 ) ) ) |
9 |
7 8
|
syl5ibrcom |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑉 = ( 0 ... 𝑁 ) → 0 ∈ 𝑉 ) ) |
10 |
6 9
|
biimtrrid |
⊢ ( 𝑁 ∈ ℕ0 → ( ( Vtx ‘ ( StarGr ‘ 𝑁 ) ) = ( 0 ... 𝑁 ) → 0 ∈ 𝑉 ) ) |
11 |
3 10
|
mpd |
⊢ ( 𝑁 ∈ ℕ0 → 0 ∈ 𝑉 ) |