Metamath Proof Explorer


Theorem stgrvtx0

Description: The center ("internal node") of a star graph S_N. (Contributed by AV, 12-Sep-2025)

Ref Expression
Hypotheses stgrvtx0.g 𝐺 = ( StarGr ‘ 𝑁 )
stgrvtx0.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion stgrvtx0 ( 𝑁 ∈ ℕ0 → 0 ∈ 𝑉 )

Proof

Step Hyp Ref Expression
1 stgrvtx0.g 𝐺 = ( StarGr ‘ 𝑁 )
2 stgrvtx0.v 𝑉 = ( Vtx ‘ 𝐺 )
3 stgrvtx ( 𝑁 ∈ ℕ0 → ( Vtx ‘ ( StarGr ‘ 𝑁 ) ) = ( 0 ... 𝑁 ) )
4 1 fveq2i ( Vtx ‘ 𝐺 ) = ( Vtx ‘ ( StarGr ‘ 𝑁 ) )
5 2 4 eqtri 𝑉 = ( Vtx ‘ ( StarGr ‘ 𝑁 ) )
6 5 eqeq1i ( 𝑉 = ( 0 ... 𝑁 ) ↔ ( Vtx ‘ ( StarGr ‘ 𝑁 ) ) = ( 0 ... 𝑁 ) )
7 0elfz ( 𝑁 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑁 ) )
8 eleq2 ( 𝑉 = ( 0 ... 𝑁 ) → ( 0 ∈ 𝑉 ↔ 0 ∈ ( 0 ... 𝑁 ) ) )
9 7 8 syl5ibrcom ( 𝑁 ∈ ℕ0 → ( 𝑉 = ( 0 ... 𝑁 ) → 0 ∈ 𝑉 ) )
10 6 9 biimtrrid ( 𝑁 ∈ ℕ0 → ( ( Vtx ‘ ( StarGr ‘ 𝑁 ) ) = ( 0 ... 𝑁 ) → 0 ∈ 𝑉 ) )
11 3 10 mpd ( 𝑁 ∈ ℕ0 → 0 ∈ 𝑉 )