Metamath Proof Explorer


Theorem stgrclnbgr0

Description: All vertices of a star graph S_N are in the closed neighborhood of the center. (Contributed by AV, 12-Sep-2025)

Ref Expression
Hypotheses stgrvtx0.g
|- G = ( StarGr ` N )
stgrvtx0.v
|- V = ( Vtx ` G )
Assertion stgrclnbgr0
|- ( N e. NN0 -> ( G ClNeighbVtx 0 ) = V )

Proof

Step Hyp Ref Expression
1 stgrvtx0.g
 |-  G = ( StarGr ` N )
2 stgrvtx0.v
 |-  V = ( Vtx ` G )
3 1 2 stgrvtx0
 |-  ( N e. NN0 -> 0 e. V )
4 2 dfclnbgr4
 |-  ( 0 e. V -> ( G ClNeighbVtx 0 ) = ( { 0 } u. ( G NeighbVtx 0 ) ) )
5 3 4 syl
 |-  ( N e. NN0 -> ( G ClNeighbVtx 0 ) = ( { 0 } u. ( G NeighbVtx 0 ) ) )
6 1 2 stgrnbgr0
 |-  ( N e. NN0 -> ( G NeighbVtx 0 ) = ( V \ { 0 } ) )
7 6 uneq2d
 |-  ( N e. NN0 -> ( { 0 } u. ( G NeighbVtx 0 ) ) = ( { 0 } u. ( V \ { 0 } ) ) )
8 3 snssd
 |-  ( N e. NN0 -> { 0 } C_ V )
9 undif
 |-  ( { 0 } C_ V <-> ( { 0 } u. ( V \ { 0 } ) ) = V )
10 8 9 sylib
 |-  ( N e. NN0 -> ( { 0 } u. ( V \ { 0 } ) ) = V )
11 5 7 10 3eqtrd
 |-  ( N e. NN0 -> ( G ClNeighbVtx 0 ) = V )