Step |
Hyp |
Ref |
Expression |
1 |
|
stgrvtx0.g |
|- G = ( StarGr ` N ) |
2 |
|
stgrvtx0.v |
|- V = ( Vtx ` G ) |
3 |
1 2
|
stgrvtx0 |
|- ( N e. NN0 -> 0 e. V ) |
4 |
2
|
dfclnbgr4 |
|- ( 0 e. V -> ( G ClNeighbVtx 0 ) = ( { 0 } u. ( G NeighbVtx 0 ) ) ) |
5 |
3 4
|
syl |
|- ( N e. NN0 -> ( G ClNeighbVtx 0 ) = ( { 0 } u. ( G NeighbVtx 0 ) ) ) |
6 |
1 2
|
stgrnbgr0 |
|- ( N e. NN0 -> ( G NeighbVtx 0 ) = ( V \ { 0 } ) ) |
7 |
6
|
uneq2d |
|- ( N e. NN0 -> ( { 0 } u. ( G NeighbVtx 0 ) ) = ( { 0 } u. ( V \ { 0 } ) ) ) |
8 |
3
|
snssd |
|- ( N e. NN0 -> { 0 } C_ V ) |
9 |
|
undif |
|- ( { 0 } C_ V <-> ( { 0 } u. ( V \ { 0 } ) ) = V ) |
10 |
8 9
|
sylib |
|- ( N e. NN0 -> ( { 0 } u. ( V \ { 0 } ) ) = V ) |
11 |
5 7 10
|
3eqtrd |
|- ( N e. NN0 -> ( G ClNeighbVtx 0 ) = V ) |