Metamath Proof Explorer


Theorem stgrnbgr0

Description: All vertices of a star graph S_N except the center are in the (open) neighborhood of the center. (Contributed by AV, 12-Sep-2025)

Ref Expression
Hypotheses stgrvtx0.g 𝐺 = ( StarGr ‘ 𝑁 )
stgrvtx0.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion stgrnbgr0 ( 𝑁 ∈ ℕ0 → ( 𝐺 NeighbVtx 0 ) = ( 𝑉 ∖ { 0 } ) )

Proof

Step Hyp Ref Expression
1 stgrvtx0.g 𝐺 = ( StarGr ‘ 𝑁 )
2 stgrvtx0.v 𝑉 = ( Vtx ‘ 𝐺 )
3 1 2 stgrvtx0 ( 𝑁 ∈ ℕ0 → 0 ∈ 𝑉 )
4 eqid ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 )
5 2 4 dfnbgr2 ( 0 ∈ 𝑉 → ( 𝐺 NeighbVtx 0 ) = { 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( 0 ∈ 𝑒𝑥𝑒 ) } )
6 3 5 syl ( 𝑁 ∈ ℕ0 → ( 𝐺 NeighbVtx 0 ) = { 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( 0 ∈ 𝑒𝑥𝑒 ) } )
7 eleq2 ( 𝑒 = { 0 , 𝑥 } → ( 0 ∈ 𝑒 ↔ 0 ∈ { 0 , 𝑥 } ) )
8 eleq2 ( 𝑒 = { 0 , 𝑥 } → ( 𝑥𝑒𝑥 ∈ { 0 , 𝑥 } ) )
9 7 8 anbi12d ( 𝑒 = { 0 , 𝑥 } → ( ( 0 ∈ 𝑒𝑥𝑒 ) ↔ ( 0 ∈ { 0 , 𝑥 } ∧ 𝑥 ∈ { 0 , 𝑥 } ) ) )
10 0elfz ( 𝑁 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑁 ) )
11 10 adantr ( ( 𝑁 ∈ ℕ0𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → 0 ∈ ( 0 ... 𝑁 ) )
12 fz1ssfz0 ( 1 ... 𝑁 ) ⊆ ( 0 ... 𝑁 )
13 1 fveq2i ( Vtx ‘ 𝐺 ) = ( Vtx ‘ ( StarGr ‘ 𝑁 ) )
14 2 13 eqtri 𝑉 = ( Vtx ‘ ( StarGr ‘ 𝑁 ) )
15 stgrvtx ( 𝑁 ∈ ℕ0 → ( Vtx ‘ ( StarGr ‘ 𝑁 ) ) = ( 0 ... 𝑁 ) )
16 14 15 eqtrid ( 𝑁 ∈ ℕ0𝑉 = ( 0 ... 𝑁 ) )
17 16 difeq1d ( 𝑁 ∈ ℕ0 → ( 𝑉 ∖ { 0 } ) = ( ( 0 ... 𝑁 ) ∖ { 0 } ) )
18 fz0dif1 ( 𝑁 ∈ ℕ0 → ( ( 0 ... 𝑁 ) ∖ { 0 } ) = ( 1 ... 𝑁 ) )
19 18 eqimssd ( 𝑁 ∈ ℕ0 → ( ( 0 ... 𝑁 ) ∖ { 0 } ) ⊆ ( 1 ... 𝑁 ) )
20 17 19 eqsstrd ( 𝑁 ∈ ℕ0 → ( 𝑉 ∖ { 0 } ) ⊆ ( 1 ... 𝑁 ) )
21 20 sselda ( ( 𝑁 ∈ ℕ0𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → 𝑥 ∈ ( 1 ... 𝑁 ) )
22 12 21 sselid ( ( 𝑁 ∈ ℕ0𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → 𝑥 ∈ ( 0 ... 𝑁 ) )
23 11 22 prssd ( ( 𝑁 ∈ ℕ0𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → { 0 , 𝑥 } ⊆ ( 0 ... 𝑁 ) )
24 preq2 ( 𝑛 = 𝑥 → { 0 , 𝑛 } = { 0 , 𝑥 } )
25 24 eqeq2d ( 𝑛 = 𝑥 → ( { 0 , 𝑥 } = { 0 , 𝑛 } ↔ { 0 , 𝑥 } = { 0 , 𝑥 } ) )
26 eqidd ( ( 𝑁 ∈ ℕ0𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → { 0 , 𝑥 } = { 0 , 𝑥 } )
27 25 21 26 rspcedvdw ( ( 𝑁 ∈ ℕ0𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → ∃ 𝑛 ∈ ( 1 ... 𝑁 ) { 0 , 𝑥 } = { 0 , 𝑛 } )
28 1 fveq2i ( Edg ‘ 𝐺 ) = ( Edg ‘ ( StarGr ‘ 𝑁 ) )
29 28 eleq2i ( { 0 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ↔ { 0 , 𝑥 } ∈ ( Edg ‘ ( StarGr ‘ 𝑁 ) ) )
30 stgredgel ( 𝑁 ∈ ℕ0 → ( { 0 , 𝑥 } ∈ ( Edg ‘ ( StarGr ‘ 𝑁 ) ) ↔ ( { 0 , 𝑥 } ⊆ ( 0 ... 𝑁 ) ∧ ∃ 𝑛 ∈ ( 1 ... 𝑁 ) { 0 , 𝑥 } = { 0 , 𝑛 } ) ) )
31 30 adantr ( ( 𝑁 ∈ ℕ0𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → ( { 0 , 𝑥 } ∈ ( Edg ‘ ( StarGr ‘ 𝑁 ) ) ↔ ( { 0 , 𝑥 } ⊆ ( 0 ... 𝑁 ) ∧ ∃ 𝑛 ∈ ( 1 ... 𝑁 ) { 0 , 𝑥 } = { 0 , 𝑛 } ) ) )
32 29 31 bitrid ( ( 𝑁 ∈ ℕ0𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → ( { 0 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ↔ ( { 0 , 𝑥 } ⊆ ( 0 ... 𝑁 ) ∧ ∃ 𝑛 ∈ ( 1 ... 𝑁 ) { 0 , 𝑥 } = { 0 , 𝑛 } ) ) )
33 23 27 32 mpbir2and ( ( 𝑁 ∈ ℕ0𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → { 0 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) )
34 prid2g ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) → 𝑥 ∈ { 0 , 𝑥 } )
35 34 adantl ( ( 𝑁 ∈ ℕ0𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → 𝑥 ∈ { 0 , 𝑥 } )
36 c0ex 0 ∈ V
37 36 prid1 0 ∈ { 0 , 𝑥 }
38 35 37 jctil ( ( 𝑁 ∈ ℕ0𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 0 ∈ { 0 , 𝑥 } ∧ 𝑥 ∈ { 0 , 𝑥 } ) )
39 9 33 38 rspcedvdw ( ( 𝑁 ∈ ℕ0𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( 0 ∈ 𝑒𝑥𝑒 ) )
40 39 rabeqcda ( 𝑁 ∈ ℕ0 → { 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( 0 ∈ 𝑒𝑥𝑒 ) } = ( 𝑉 ∖ { 0 } ) )
41 6 40 eqtrd ( 𝑁 ∈ ℕ0 → ( 𝐺 NeighbVtx 0 ) = ( 𝑉 ∖ { 0 } ) )