| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stgredg |
⊢ ( 𝑁 ∈ ℕ0 → ( Edg ‘ ( StarGr ‘ 𝑁 ) ) = { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) |
| 2 |
1
|
eleq2d |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐸 ∈ ( Edg ‘ ( StarGr ‘ 𝑁 ) ) ↔ 𝐸 ∈ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) ) |
| 3 |
|
eqeq1 |
⊢ ( 𝑒 = 𝐸 → ( 𝑒 = { 0 , 𝑥 } ↔ 𝐸 = { 0 , 𝑥 } ) ) |
| 4 |
3
|
rexbidv |
⊢ ( 𝑒 = 𝐸 → ( ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } ↔ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝐸 = { 0 , 𝑥 } ) ) |
| 5 |
4
|
elrab |
⊢ ( 𝐸 ∈ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ↔ ( 𝐸 ∈ 𝒫 ( 0 ... 𝑁 ) ∧ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝐸 = { 0 , 𝑥 } ) ) |
| 6 |
|
prex |
⊢ { 0 , 𝑥 } ∈ V |
| 7 |
|
eleq1 |
⊢ ( 𝐸 = { 0 , 𝑥 } → ( 𝐸 ∈ V ↔ { 0 , 𝑥 } ∈ V ) ) |
| 8 |
6 7
|
mpbiri |
⊢ ( 𝐸 = { 0 , 𝑥 } → 𝐸 ∈ V ) |
| 9 |
|
elpwg |
⊢ ( 𝐸 ∈ V → ( 𝐸 ∈ 𝒫 ( 0 ... 𝑁 ) ↔ 𝐸 ⊆ ( 0 ... 𝑁 ) ) ) |
| 10 |
8 9
|
syl |
⊢ ( 𝐸 = { 0 , 𝑥 } → ( 𝐸 ∈ 𝒫 ( 0 ... 𝑁 ) ↔ 𝐸 ⊆ ( 0 ... 𝑁 ) ) ) |
| 11 |
10
|
a1i |
⊢ ( 𝑥 ∈ ( 1 ... 𝑁 ) → ( 𝐸 = { 0 , 𝑥 } → ( 𝐸 ∈ 𝒫 ( 0 ... 𝑁 ) ↔ 𝐸 ⊆ ( 0 ... 𝑁 ) ) ) ) |
| 12 |
11
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝐸 = { 0 , 𝑥 } → ( 𝐸 ∈ 𝒫 ( 0 ... 𝑁 ) ↔ 𝐸 ⊆ ( 0 ... 𝑁 ) ) ) |
| 13 |
5 12
|
bianim |
⊢ ( 𝐸 ∈ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ↔ ( 𝐸 ⊆ ( 0 ... 𝑁 ) ∧ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝐸 = { 0 , 𝑥 } ) ) |
| 14 |
2 13
|
bitrdi |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐸 ∈ ( Edg ‘ ( StarGr ‘ 𝑁 ) ) ↔ ( 𝐸 ⊆ ( 0 ... 𝑁 ) ∧ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝐸 = { 0 , 𝑥 } ) ) ) |