Metamath Proof Explorer


Theorem stgredgel

Description: An edge of the star graph S_N. (Contributed by AV, 11-Sep-2025)

Ref Expression
Assertion stgredgel ( 𝑁 ∈ ℕ0 → ( 𝐸 ∈ ( Edg ‘ ( StarGr ‘ 𝑁 ) ) ↔ ( 𝐸 ⊆ ( 0 ... 𝑁 ) ∧ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝐸 = { 0 , 𝑥 } ) ) )

Proof

Step Hyp Ref Expression
1 stgredg ( 𝑁 ∈ ℕ0 → ( Edg ‘ ( StarGr ‘ 𝑁 ) ) = { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } )
2 1 eleq2d ( 𝑁 ∈ ℕ0 → ( 𝐸 ∈ ( Edg ‘ ( StarGr ‘ 𝑁 ) ) ↔ 𝐸 ∈ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) )
3 eqeq1 ( 𝑒 = 𝐸 → ( 𝑒 = { 0 , 𝑥 } ↔ 𝐸 = { 0 , 𝑥 } ) )
4 3 rexbidv ( 𝑒 = 𝐸 → ( ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } ↔ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝐸 = { 0 , 𝑥 } ) )
5 4 elrab ( 𝐸 ∈ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ↔ ( 𝐸 ∈ 𝒫 ( 0 ... 𝑁 ) ∧ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝐸 = { 0 , 𝑥 } ) )
6 prex { 0 , 𝑥 } ∈ V
7 eleq1 ( 𝐸 = { 0 , 𝑥 } → ( 𝐸 ∈ V ↔ { 0 , 𝑥 } ∈ V ) )
8 6 7 mpbiri ( 𝐸 = { 0 , 𝑥 } → 𝐸 ∈ V )
9 elpwg ( 𝐸 ∈ V → ( 𝐸 ∈ 𝒫 ( 0 ... 𝑁 ) ↔ 𝐸 ⊆ ( 0 ... 𝑁 ) ) )
10 8 9 syl ( 𝐸 = { 0 , 𝑥 } → ( 𝐸 ∈ 𝒫 ( 0 ... 𝑁 ) ↔ 𝐸 ⊆ ( 0 ... 𝑁 ) ) )
11 10 a1i ( 𝑥 ∈ ( 1 ... 𝑁 ) → ( 𝐸 = { 0 , 𝑥 } → ( 𝐸 ∈ 𝒫 ( 0 ... 𝑁 ) ↔ 𝐸 ⊆ ( 0 ... 𝑁 ) ) ) )
12 11 rexlimiv ( ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝐸 = { 0 , 𝑥 } → ( 𝐸 ∈ 𝒫 ( 0 ... 𝑁 ) ↔ 𝐸 ⊆ ( 0 ... 𝑁 ) ) )
13 5 12 bianim ( 𝐸 ∈ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ↔ ( 𝐸 ⊆ ( 0 ... 𝑁 ) ∧ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝐸 = { 0 , 𝑥 } ) )
14 2 13 bitrdi ( 𝑁 ∈ ℕ0 → ( 𝐸 ∈ ( Edg ‘ ( StarGr ‘ 𝑁 ) ) ↔ ( 𝐸 ⊆ ( 0 ... 𝑁 ) ∧ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝐸 = { 0 , 𝑥 } ) ) )