Step |
Hyp |
Ref |
Expression |
1 |
|
edgval |
⊢ ( Edg ‘ ( StarGr ‘ 𝑁 ) ) = ran ( iEdg ‘ ( StarGr ‘ 𝑁 ) ) |
2 |
|
stgriedg |
⊢ ( 𝑁 ∈ ℕ0 → ( iEdg ‘ ( StarGr ‘ 𝑁 ) ) = ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) ) |
3 |
2
|
rneqd |
⊢ ( 𝑁 ∈ ℕ0 → ran ( iEdg ‘ ( StarGr ‘ 𝑁 ) ) = ran ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) ) |
4 |
|
rnresi |
⊢ ran ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) = { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } |
5 |
3 4
|
eqtrdi |
⊢ ( 𝑁 ∈ ℕ0 → ran ( iEdg ‘ ( StarGr ‘ 𝑁 ) ) = { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) |
6 |
1 5
|
eqtrid |
⊢ ( 𝑁 ∈ ℕ0 → ( Edg ‘ ( StarGr ‘ 𝑁 ) ) = { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) |