Step |
Hyp |
Ref |
Expression |
1 |
|
edgval |
|- ( Edg ` ( StarGr ` N ) ) = ran ( iEdg ` ( StarGr ` N ) ) |
2 |
|
stgriedg |
|- ( N e. NN0 -> ( iEdg ` ( StarGr ` N ) ) = ( _I |` { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } ) ) |
3 |
2
|
rneqd |
|- ( N e. NN0 -> ran ( iEdg ` ( StarGr ` N ) ) = ran ( _I |` { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } ) ) |
4 |
|
rnresi |
|- ran ( _I |` { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } ) = { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } |
5 |
3 4
|
eqtrdi |
|- ( N e. NN0 -> ran ( iEdg ` ( StarGr ` N ) ) = { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } ) |
6 |
1 5
|
eqtrid |
|- ( N e. NN0 -> ( Edg ` ( StarGr ` N ) ) = { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } ) |