Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones13.1 |
|- ( ph -> N e. NN0 ) |
2 |
|
sticksstones13.2 |
|- ( ph -> K e. NN0 ) |
3 |
|
sticksstones13.3 |
|- F = ( a e. A |-> ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) ) |
4 |
|
sticksstones13.4 |
|- G = ( b e. B |-> if ( K = 0 , { <. 1 , N >. } , ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ) ) |
5 |
|
sticksstones13.5 |
|- A = { g | ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) } |
6 |
|
sticksstones13.6 |
|- B = { f | ( f : ( 1 ... K ) --> ( 1 ... ( N + K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) } |
7 |
1
|
adantr |
|- ( ( ph /\ K = 0 ) -> N e. NN0 ) |
8 |
|
simpr |
|- ( ( ph /\ K = 0 ) -> K = 0 ) |
9 |
7 8 3 4 5 6
|
sticksstones11 |
|- ( ( ph /\ K = 0 ) -> F : A -1-1-onto-> B ) |
10 |
1
|
adantr |
|- ( ( ph /\ K e. NN ) -> N e. NN0 ) |
11 |
|
simpr |
|- ( ( ph /\ K e. NN ) -> K e. NN ) |
12 |
10 11 3 4 5 6
|
sticksstones12 |
|- ( ( ph /\ K e. NN ) -> F : A -1-1-onto-> B ) |
13 |
|
elnn0 |
|- ( K e. NN0 <-> ( K e. NN \/ K = 0 ) ) |
14 |
13
|
biimpi |
|- ( K e. NN0 -> ( K e. NN \/ K = 0 ) ) |
15 |
14
|
orcomd |
|- ( K e. NN0 -> ( K = 0 \/ K e. NN ) ) |
16 |
2 15
|
syl |
|- ( ph -> ( K = 0 \/ K e. NN ) ) |
17 |
9 12 16
|
mpjaodan |
|- ( ph -> F : A -1-1-onto-> B ) |