| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sticksstones13.1 |  |-  ( ph -> N e. NN0 ) | 
						
							| 2 |  | sticksstones13.2 |  |-  ( ph -> K e. NN0 ) | 
						
							| 3 |  | sticksstones13.3 |  |-  F = ( a e. A |-> ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) ) | 
						
							| 4 |  | sticksstones13.4 |  |-  G = ( b e. B |-> if ( K = 0 , { <. 1 , N >. } , ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ) ) | 
						
							| 5 |  | sticksstones13.5 |  |-  A = { g | ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) } | 
						
							| 6 |  | sticksstones13.6 |  |-  B = { f | ( f : ( 1 ... K ) --> ( 1 ... ( N + K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) } | 
						
							| 7 | 1 | adantr |  |-  ( ( ph /\ K = 0 ) -> N e. NN0 ) | 
						
							| 8 |  | simpr |  |-  ( ( ph /\ K = 0 ) -> K = 0 ) | 
						
							| 9 | 7 8 3 4 5 6 | sticksstones11 |  |-  ( ( ph /\ K = 0 ) -> F : A -1-1-onto-> B ) | 
						
							| 10 | 1 | adantr |  |-  ( ( ph /\ K e. NN ) -> N e. NN0 ) | 
						
							| 11 |  | simpr |  |-  ( ( ph /\ K e. NN ) -> K e. NN ) | 
						
							| 12 | 10 11 3 4 5 6 | sticksstones12 |  |-  ( ( ph /\ K e. NN ) -> F : A -1-1-onto-> B ) | 
						
							| 13 |  | elnn0 |  |-  ( K e. NN0 <-> ( K e. NN \/ K = 0 ) ) | 
						
							| 14 | 13 | biimpi |  |-  ( K e. NN0 -> ( K e. NN \/ K = 0 ) ) | 
						
							| 15 | 14 | orcomd |  |-  ( K e. NN0 -> ( K = 0 \/ K e. NN ) ) | 
						
							| 16 | 2 15 | syl |  |-  ( ph -> ( K = 0 \/ K e. NN ) ) | 
						
							| 17 | 9 12 16 | mpjaodan |  |-  ( ph -> F : A -1-1-onto-> B ) |