Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones12.1 |
|- ( ph -> N e. NN0 ) |
2 |
|
sticksstones12.2 |
|- ( ph -> K e. NN ) |
3 |
|
sticksstones12.3 |
|- F = ( a e. A |-> ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) ) |
4 |
|
sticksstones12.4 |
|- G = ( b e. B |-> if ( K = 0 , { <. 1 , N >. } , ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ) ) |
5 |
|
sticksstones12.5 |
|- A = { g | ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) } |
6 |
|
sticksstones12.6 |
|- B = { f | ( f : ( 1 ... K ) --> ( 1 ... ( N + K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) } |
7 |
2
|
nnnn0d |
|- ( ph -> K e. NN0 ) |
8 |
1 7 3 5 6
|
sticksstones8 |
|- ( ph -> F : A --> B ) |
9 |
1 2 4 5 6
|
sticksstones10 |
|- ( ph -> G : B --> A ) |
10 |
4
|
a1i |
|- ( ph -> G = ( b e. B |-> if ( K = 0 , { <. 1 , N >. } , ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ) ) ) |
11 |
|
0red |
|- ( ph -> 0 e. RR ) |
12 |
2
|
nngt0d |
|- ( ph -> 0 < K ) |
13 |
11 12
|
ltned |
|- ( ph -> 0 =/= K ) |
14 |
13
|
necomd |
|- ( ph -> K =/= 0 ) |
15 |
14
|
neneqd |
|- ( ph -> -. K = 0 ) |
16 |
15
|
iffalsed |
|- ( ph -> if ( K = 0 , { <. 1 , N >. } , ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ) = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ) |
17 |
16
|
adantr |
|- ( ( ph /\ b e. B ) -> if ( K = 0 , { <. 1 , N >. } , ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ) = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ) |
18 |
17
|
mpteq2dva |
|- ( ph -> ( b e. B |-> if ( K = 0 , { <. 1 , N >. } , ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ) ) = ( b e. B |-> ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ) ) |
19 |
10 18
|
eqtrd |
|- ( ph -> G = ( b e. B |-> ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ) ) |
20 |
19
|
adantr |
|- ( ( ph /\ c e. A ) -> G = ( b e. B |-> ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ) ) |
21 |
|
fveq1 |
|- ( b = ( F ` c ) -> ( b ` K ) = ( ( F ` c ) ` K ) ) |
22 |
21
|
oveq2d |
|- ( b = ( F ` c ) -> ( ( N + K ) - ( b ` K ) ) = ( ( N + K ) - ( ( F ` c ) ` K ) ) ) |
23 |
|
fveq1 |
|- ( b = ( F ` c ) -> ( b ` 1 ) = ( ( F ` c ) ` 1 ) ) |
24 |
23
|
oveq1d |
|- ( b = ( F ` c ) -> ( ( b ` 1 ) - 1 ) = ( ( ( F ` c ) ` 1 ) - 1 ) ) |
25 |
|
fveq1 |
|- ( b = ( F ` c ) -> ( b ` k ) = ( ( F ` c ) ` k ) ) |
26 |
|
fveq1 |
|- ( b = ( F ` c ) -> ( b ` ( k - 1 ) ) = ( ( F ` c ) ` ( k - 1 ) ) ) |
27 |
25 26
|
oveq12d |
|- ( b = ( F ` c ) -> ( ( b ` k ) - ( b ` ( k - 1 ) ) ) = ( ( ( F ` c ) ` k ) - ( ( F ` c ) ` ( k - 1 ) ) ) ) |
28 |
27
|
oveq1d |
|- ( b = ( F ` c ) -> ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) = ( ( ( ( F ` c ) ` k ) - ( ( F ` c ) ` ( k - 1 ) ) ) - 1 ) ) |
29 |
24 28
|
ifeq12d |
|- ( b = ( F ` c ) -> if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) = if ( k = 1 , ( ( ( F ` c ) ` 1 ) - 1 ) , ( ( ( ( F ` c ) ` k ) - ( ( F ` c ) ` ( k - 1 ) ) ) - 1 ) ) ) |
30 |
22 29
|
ifeq12d |
|- ( b = ( F ` c ) -> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) = if ( k = ( K + 1 ) , ( ( N + K ) - ( ( F ` c ) ` K ) ) , if ( k = 1 , ( ( ( F ` c ) ` 1 ) - 1 ) , ( ( ( ( F ` c ) ` k ) - ( ( F ` c ) ` ( k - 1 ) ) ) - 1 ) ) ) ) |
31 |
30
|
adantr |
|- ( ( b = ( F ` c ) /\ k e. ( 1 ... ( K + 1 ) ) ) -> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) = if ( k = ( K + 1 ) , ( ( N + K ) - ( ( F ` c ) ` K ) ) , if ( k = 1 , ( ( ( F ` c ) ` 1 ) - 1 ) , ( ( ( ( F ` c ) ` k ) - ( ( F ` c ) ` ( k - 1 ) ) ) - 1 ) ) ) ) |
32 |
31
|
mpteq2dva |
|- ( b = ( F ` c ) -> ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( ( F ` c ) ` K ) ) , if ( k = 1 , ( ( ( F ` c ) ` 1 ) - 1 ) , ( ( ( ( F ` c ) ` k ) - ( ( F ` c ) ` ( k - 1 ) ) ) - 1 ) ) ) ) ) |
33 |
32
|
adantl |
|- ( ( ( ph /\ c e. A ) /\ b = ( F ` c ) ) -> ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( ( F ` c ) ` K ) ) , if ( k = 1 , ( ( ( F ` c ) ` 1 ) - 1 ) , ( ( ( ( F ` c ) ` k ) - ( ( F ` c ) ` ( k - 1 ) ) ) - 1 ) ) ) ) ) |
34 |
8
|
ffvelrnda |
|- ( ( ph /\ c e. A ) -> ( F ` c ) e. B ) |
35 |
|
fzfid |
|- ( ( ph /\ c e. A ) -> ( 1 ... ( K + 1 ) ) e. Fin ) |
36 |
35
|
mptexd |
|- ( ( ph /\ c e. A ) -> ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( ( F ` c ) ` K ) ) , if ( k = 1 , ( ( ( F ` c ) ` 1 ) - 1 ) , ( ( ( ( F ` c ) ` k ) - ( ( F ` c ) ` ( k - 1 ) ) ) - 1 ) ) ) ) e. _V ) |
37 |
20 33 34 36
|
fvmptd |
|- ( ( ph /\ c e. A ) -> ( G ` ( F ` c ) ) = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( ( F ` c ) ` K ) ) , if ( k = 1 , ( ( ( F ` c ) ` 1 ) - 1 ) , ( ( ( ( F ` c ) ` k ) - ( ( F ` c ) ` ( k - 1 ) ) ) - 1 ) ) ) ) ) |
38 |
3
|
a1i |
|- ( ( ph /\ c e. A ) -> F = ( a e. A |-> ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) ) ) |
39 |
|
simpllr |
|- ( ( ( ( ( ph /\ c e. A ) /\ a = c ) /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> a = c ) |
40 |
39
|
fveq1d |
|- ( ( ( ( ( ph /\ c e. A ) /\ a = c ) /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> ( a ` l ) = ( c ` l ) ) |
41 |
40
|
sumeq2dv |
|- ( ( ( ( ph /\ c e. A ) /\ a = c ) /\ j e. ( 1 ... K ) ) -> sum_ l e. ( 1 ... j ) ( a ` l ) = sum_ l e. ( 1 ... j ) ( c ` l ) ) |
42 |
41
|
oveq2d |
|- ( ( ( ( ph /\ c e. A ) /\ a = c ) /\ j e. ( 1 ... K ) ) -> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) = ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) ) |
43 |
42
|
mpteq2dva |
|- ( ( ( ph /\ c e. A ) /\ a = c ) -> ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) = ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) ) ) |
44 |
|
simpr |
|- ( ( ph /\ c e. A ) -> c e. A ) |
45 |
|
fzfid |
|- ( ( ph /\ c e. A ) -> ( 1 ... K ) e. Fin ) |
46 |
45
|
mptexd |
|- ( ( ph /\ c e. A ) -> ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) ) e. _V ) |
47 |
38 43 44 46
|
fvmptd |
|- ( ( ph /\ c e. A ) -> ( F ` c ) = ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) ) ) |
48 |
|
simpr |
|- ( ( ( ph /\ c e. A ) /\ j = K ) -> j = K ) |
49 |
48
|
oveq2d |
|- ( ( ( ph /\ c e. A ) /\ j = K ) -> ( 1 ... j ) = ( 1 ... K ) ) |
50 |
49
|
sumeq1d |
|- ( ( ( ph /\ c e. A ) /\ j = K ) -> sum_ l e. ( 1 ... j ) ( c ` l ) = sum_ l e. ( 1 ... K ) ( c ` l ) ) |
51 |
48 50
|
oveq12d |
|- ( ( ( ph /\ c e. A ) /\ j = K ) -> ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) = ( K + sum_ l e. ( 1 ... K ) ( c ` l ) ) ) |
52 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
53 |
7
|
nn0zd |
|- ( ph -> K e. ZZ ) |
54 |
2
|
nnge1d |
|- ( ph -> 1 <_ K ) |
55 |
2
|
nnred |
|- ( ph -> K e. RR ) |
56 |
55
|
leidd |
|- ( ph -> K <_ K ) |
57 |
52 53 53 54 56
|
elfzd |
|- ( ph -> K e. ( 1 ... K ) ) |
58 |
57
|
adantr |
|- ( ( ph /\ c e. A ) -> K e. ( 1 ... K ) ) |
59 |
|
ovexd |
|- ( ( ph /\ c e. A ) -> ( K + sum_ l e. ( 1 ... K ) ( c ` l ) ) e. _V ) |
60 |
47 51 58 59
|
fvmptd |
|- ( ( ph /\ c e. A ) -> ( ( F ` c ) ` K ) = ( K + sum_ l e. ( 1 ... K ) ( c ` l ) ) ) |
61 |
60
|
oveq2d |
|- ( ( ph /\ c e. A ) -> ( ( N + K ) - ( ( F ` c ) ` K ) ) = ( ( N + K ) - ( K + sum_ l e. ( 1 ... K ) ( c ` l ) ) ) ) |
62 |
1
|
nn0cnd |
|- ( ph -> N e. CC ) |
63 |
62
|
adantr |
|- ( ( ph /\ c e. A ) -> N e. CC ) |
64 |
55
|
recnd |
|- ( ph -> K e. CC ) |
65 |
64
|
adantr |
|- ( ( ph /\ c e. A ) -> K e. CC ) |
66 |
63 65
|
addcomd |
|- ( ( ph /\ c e. A ) -> ( N + K ) = ( K + N ) ) |
67 |
66
|
oveq1d |
|- ( ( ph /\ c e. A ) -> ( ( N + K ) - ( K + sum_ l e. ( 1 ... K ) ( c ` l ) ) ) = ( ( K + N ) - ( K + sum_ l e. ( 1 ... K ) ( c ` l ) ) ) ) |
68 |
|
1zzd |
|- ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... K ) ) -> 1 e. ZZ ) |
69 |
53
|
ad2antrr |
|- ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... K ) ) -> K e. ZZ ) |
70 |
69
|
peano2zd |
|- ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... K ) ) -> ( K + 1 ) e. ZZ ) |
71 |
|
elfzelz |
|- ( l e. ( 1 ... K ) -> l e. ZZ ) |
72 |
71
|
adantl |
|- ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... K ) ) -> l e. ZZ ) |
73 |
|
elfzle1 |
|- ( l e. ( 1 ... K ) -> 1 <_ l ) |
74 |
73
|
adantl |
|- ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... K ) ) -> 1 <_ l ) |
75 |
72
|
zred |
|- ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... K ) ) -> l e. RR ) |
76 |
55
|
ad2antrr |
|- ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... K ) ) -> K e. RR ) |
77 |
70
|
zred |
|- ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... K ) ) -> ( K + 1 ) e. RR ) |
78 |
|
elfzle2 |
|- ( l e. ( 1 ... K ) -> l <_ K ) |
79 |
78
|
adantl |
|- ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... K ) ) -> l <_ K ) |
80 |
76
|
lep1d |
|- ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... K ) ) -> K <_ ( K + 1 ) ) |
81 |
75 76 77 79 80
|
letrd |
|- ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... K ) ) -> l <_ ( K + 1 ) ) |
82 |
68 70 72 74 81
|
elfzd |
|- ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... K ) ) -> l e. ( 1 ... ( K + 1 ) ) ) |
83 |
5
|
eleq2i |
|- ( c e. A <-> c e. { g | ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) } ) |
84 |
83
|
biimpi |
|- ( c e. A -> c e. { g | ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) } ) |
85 |
84
|
adantl |
|- ( ( ph /\ c e. A ) -> c e. { g | ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) } ) |
86 |
|
vex |
|- c e. _V |
87 |
|
feq1 |
|- ( g = c -> ( g : ( 1 ... ( K + 1 ) ) --> NN0 <-> c : ( 1 ... ( K + 1 ) ) --> NN0 ) ) |
88 |
|
simpl |
|- ( ( g = c /\ i e. ( 1 ... ( K + 1 ) ) ) -> g = c ) |
89 |
88
|
fveq1d |
|- ( ( g = c /\ i e. ( 1 ... ( K + 1 ) ) ) -> ( g ` i ) = ( c ` i ) ) |
90 |
89
|
sumeq2dv |
|- ( g = c -> sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = sum_ i e. ( 1 ... ( K + 1 ) ) ( c ` i ) ) |
91 |
90
|
eqeq1d |
|- ( g = c -> ( sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N <-> sum_ i e. ( 1 ... ( K + 1 ) ) ( c ` i ) = N ) ) |
92 |
87 91
|
anbi12d |
|- ( g = c -> ( ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) <-> ( c : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( c ` i ) = N ) ) ) |
93 |
86 92
|
elab |
|- ( c e. { g | ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) } <-> ( c : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( c ` i ) = N ) ) |
94 |
93
|
a1i |
|- ( ( ph /\ c e. A ) -> ( c e. { g | ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) } <-> ( c : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( c ` i ) = N ) ) ) |
95 |
94
|
biimpd |
|- ( ( ph /\ c e. A ) -> ( c e. { g | ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) } -> ( c : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( c ` i ) = N ) ) ) |
96 |
85 95
|
mpd |
|- ( ( ph /\ c e. A ) -> ( c : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( c ` i ) = N ) ) |
97 |
96
|
simpld |
|- ( ( ph /\ c e. A ) -> c : ( 1 ... ( K + 1 ) ) --> NN0 ) |
98 |
97
|
adantr |
|- ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... K ) ) -> c : ( 1 ... ( K + 1 ) ) --> NN0 ) |
99 |
98
|
ffvelrnda |
|- ( ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... K ) ) /\ l e. ( 1 ... ( K + 1 ) ) ) -> ( c ` l ) e. NN0 ) |
100 |
82 99
|
mpdan |
|- ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... K ) ) -> ( c ` l ) e. NN0 ) |
101 |
45 100
|
fsumnn0cl |
|- ( ( ph /\ c e. A ) -> sum_ l e. ( 1 ... K ) ( c ` l ) e. NN0 ) |
102 |
101
|
nn0cnd |
|- ( ( ph /\ c e. A ) -> sum_ l e. ( 1 ... K ) ( c ` l ) e. CC ) |
103 |
65 63 102
|
pnpcand |
|- ( ( ph /\ c e. A ) -> ( ( K + N ) - ( K + sum_ l e. ( 1 ... K ) ( c ` l ) ) ) = ( N - sum_ l e. ( 1 ... K ) ( c ` l ) ) ) |
104 |
|
eqid |
|- 1 = 1 |
105 |
|
1p0e1 |
|- ( 1 + 0 ) = 1 |
106 |
104 105
|
eqtr4i |
|- 1 = ( 1 + 0 ) |
107 |
106
|
a1i |
|- ( ph -> 1 = ( 1 + 0 ) ) |
108 |
|
1red |
|- ( ph -> 1 e. RR ) |
109 |
|
0le1 |
|- 0 <_ 1 |
110 |
109
|
a1i |
|- ( ph -> 0 <_ 1 ) |
111 |
108 11 55 108 54 110
|
le2addd |
|- ( ph -> ( 1 + 0 ) <_ ( K + 1 ) ) |
112 |
107 111
|
eqbrtrd |
|- ( ph -> 1 <_ ( K + 1 ) ) |
113 |
53
|
peano2zd |
|- ( ph -> ( K + 1 ) e. ZZ ) |
114 |
|
eluz |
|- ( ( 1 e. ZZ /\ ( K + 1 ) e. ZZ ) -> ( ( K + 1 ) e. ( ZZ>= ` 1 ) <-> 1 <_ ( K + 1 ) ) ) |
115 |
52 113 114
|
syl2anc |
|- ( ph -> ( ( K + 1 ) e. ( ZZ>= ` 1 ) <-> 1 <_ ( K + 1 ) ) ) |
116 |
112 115
|
mpbird |
|- ( ph -> ( K + 1 ) e. ( ZZ>= ` 1 ) ) |
117 |
116
|
adantr |
|- ( ( ph /\ c e. A ) -> ( K + 1 ) e. ( ZZ>= ` 1 ) ) |
118 |
97
|
ffvelrnda |
|- ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... ( K + 1 ) ) ) -> ( c ` l ) e. NN0 ) |
119 |
118
|
nn0cnd |
|- ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... ( K + 1 ) ) ) -> ( c ` l ) e. CC ) |
120 |
|
fveq2 |
|- ( l = ( K + 1 ) -> ( c ` l ) = ( c ` ( K + 1 ) ) ) |
121 |
117 119 120
|
fsumm1 |
|- ( ( ph /\ c e. A ) -> sum_ l e. ( 1 ... ( K + 1 ) ) ( c ` l ) = ( sum_ l e. ( 1 ... ( ( K + 1 ) - 1 ) ) ( c ` l ) + ( c ` ( K + 1 ) ) ) ) |
122 |
|
1cnd |
|- ( ( ph /\ c e. A ) -> 1 e. CC ) |
123 |
65 122
|
pncand |
|- ( ( ph /\ c e. A ) -> ( ( K + 1 ) - 1 ) = K ) |
124 |
123
|
oveq2d |
|- ( ( ph /\ c e. A ) -> ( 1 ... ( ( K + 1 ) - 1 ) ) = ( 1 ... K ) ) |
125 |
124
|
sumeq1d |
|- ( ( ph /\ c e. A ) -> sum_ l e. ( 1 ... ( ( K + 1 ) - 1 ) ) ( c ` l ) = sum_ l e. ( 1 ... K ) ( c ` l ) ) |
126 |
125
|
oveq1d |
|- ( ( ph /\ c e. A ) -> ( sum_ l e. ( 1 ... ( ( K + 1 ) - 1 ) ) ( c ` l ) + ( c ` ( K + 1 ) ) ) = ( sum_ l e. ( 1 ... K ) ( c ` l ) + ( c ` ( K + 1 ) ) ) ) |
127 |
121 126
|
eqtrd |
|- ( ( ph /\ c e. A ) -> sum_ l e. ( 1 ... ( K + 1 ) ) ( c ` l ) = ( sum_ l e. ( 1 ... K ) ( c ` l ) + ( c ` ( K + 1 ) ) ) ) |
128 |
127
|
eqcomd |
|- ( ( ph /\ c e. A ) -> ( sum_ l e. ( 1 ... K ) ( c ` l ) + ( c ` ( K + 1 ) ) ) = sum_ l e. ( 1 ... ( K + 1 ) ) ( c ` l ) ) |
129 |
|
fveq2 |
|- ( l = i -> ( c ` l ) = ( c ` i ) ) |
130 |
|
nfcv |
|- F/_ i ( 1 ... ( K + 1 ) ) |
131 |
|
nfcv |
|- F/_ l ( 1 ... ( K + 1 ) ) |
132 |
|
nfcv |
|- F/_ i ( c ` l ) |
133 |
|
nfcv |
|- F/_ l ( c ` i ) |
134 |
129 130 131 132 133
|
cbvsum |
|- sum_ l e. ( 1 ... ( K + 1 ) ) ( c ` l ) = sum_ i e. ( 1 ... ( K + 1 ) ) ( c ` i ) |
135 |
134
|
a1i |
|- ( ( ph /\ c e. A ) -> sum_ l e. ( 1 ... ( K + 1 ) ) ( c ` l ) = sum_ i e. ( 1 ... ( K + 1 ) ) ( c ` i ) ) |
136 |
96
|
simprd |
|- ( ( ph /\ c e. A ) -> sum_ i e. ( 1 ... ( K + 1 ) ) ( c ` i ) = N ) |
137 |
135 136
|
eqtrd |
|- ( ( ph /\ c e. A ) -> sum_ l e. ( 1 ... ( K + 1 ) ) ( c ` l ) = N ) |
138 |
128 137
|
eqtrd |
|- ( ( ph /\ c e. A ) -> ( sum_ l e. ( 1 ... K ) ( c ` l ) + ( c ` ( K + 1 ) ) ) = N ) |
139 |
|
1zzd |
|- ( ( ph /\ c e. A ) -> 1 e. ZZ ) |
140 |
53
|
adantr |
|- ( ( ph /\ c e. A ) -> K e. ZZ ) |
141 |
140
|
peano2zd |
|- ( ( ph /\ c e. A ) -> ( K + 1 ) e. ZZ ) |
142 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
143 |
142
|
a1i |
|- ( ( ph /\ c e. A ) -> 1 = ( 0 + 1 ) ) |
144 |
|
0red |
|- ( ( ph /\ c e. A ) -> 0 e. RR ) |
145 |
55
|
adantr |
|- ( ( ph /\ c e. A ) -> K e. RR ) |
146 |
|
1red |
|- ( ( ph /\ c e. A ) -> 1 e. RR ) |
147 |
11 55 12
|
ltled |
|- ( ph -> 0 <_ K ) |
148 |
147
|
adantr |
|- ( ( ph /\ c e. A ) -> 0 <_ K ) |
149 |
144 145 146 148
|
leadd1dd |
|- ( ( ph /\ c e. A ) -> ( 0 + 1 ) <_ ( K + 1 ) ) |
150 |
143 149
|
eqbrtrd |
|- ( ( ph /\ c e. A ) -> 1 <_ ( K + 1 ) ) |
151 |
55 55 108 56
|
leadd1dd |
|- ( ph -> ( K + 1 ) <_ ( K + 1 ) ) |
152 |
151
|
adantr |
|- ( ( ph /\ c e. A ) -> ( K + 1 ) <_ ( K + 1 ) ) |
153 |
139 141 141 150 152
|
elfzd |
|- ( ( ph /\ c e. A ) -> ( K + 1 ) e. ( 1 ... ( K + 1 ) ) ) |
154 |
97 153
|
ffvelrnd |
|- ( ( ph /\ c e. A ) -> ( c ` ( K + 1 ) ) e. NN0 ) |
155 |
154
|
nn0cnd |
|- ( ( ph /\ c e. A ) -> ( c ` ( K + 1 ) ) e. CC ) |
156 |
63 102 155
|
subaddd |
|- ( ( ph /\ c e. A ) -> ( ( N - sum_ l e. ( 1 ... K ) ( c ` l ) ) = ( c ` ( K + 1 ) ) <-> ( sum_ l e. ( 1 ... K ) ( c ` l ) + ( c ` ( K + 1 ) ) ) = N ) ) |
157 |
138 156
|
mpbird |
|- ( ( ph /\ c e. A ) -> ( N - sum_ l e. ( 1 ... K ) ( c ` l ) ) = ( c ` ( K + 1 ) ) ) |
158 |
103 157
|
eqtrd |
|- ( ( ph /\ c e. A ) -> ( ( K + N ) - ( K + sum_ l e. ( 1 ... K ) ( c ` l ) ) ) = ( c ` ( K + 1 ) ) ) |
159 |
67 158
|
eqtrd |
|- ( ( ph /\ c e. A ) -> ( ( N + K ) - ( K + sum_ l e. ( 1 ... K ) ( c ` l ) ) ) = ( c ` ( K + 1 ) ) ) |
160 |
61 159
|
eqtrd |
|- ( ( ph /\ c e. A ) -> ( ( N + K ) - ( ( F ` c ) ` K ) ) = ( c ` ( K + 1 ) ) ) |
161 |
160
|
3adant3 |
|- ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) -> ( ( N + K ) - ( ( F ` c ) ` K ) ) = ( c ` ( K + 1 ) ) ) |
162 |
161
|
adantr |
|- ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ k = ( K + 1 ) ) -> ( ( N + K ) - ( ( F ` c ) ` K ) ) = ( c ` ( K + 1 ) ) ) |
163 |
|
simpr |
|- ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ k = ( K + 1 ) ) -> k = ( K + 1 ) ) |
164 |
163
|
fveq2d |
|- ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ k = ( K + 1 ) ) -> ( c ` k ) = ( c ` ( K + 1 ) ) ) |
165 |
164
|
eqcomd |
|- ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ k = ( K + 1 ) ) -> ( c ` ( K + 1 ) ) = ( c ` k ) ) |
166 |
162 165
|
eqtrd |
|- ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ k = ( K + 1 ) ) -> ( ( N + K ) - ( ( F ` c ) ` K ) ) = ( c ` k ) ) |
167 |
47
|
fveq1d |
|- ( ( ph /\ c e. A ) -> ( ( F ` c ) ` 1 ) = ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) ) ` 1 ) ) |
168 |
167
|
oveq1d |
|- ( ( ph /\ c e. A ) -> ( ( ( F ` c ) ` 1 ) - 1 ) = ( ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) ) ` 1 ) - 1 ) ) |
169 |
|
eqidd |
|- ( ( ph /\ c e. A ) -> ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) ) = ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) ) ) |
170 |
|
simpr |
|- ( ( ( ph /\ c e. A ) /\ j = 1 ) -> j = 1 ) |
171 |
170
|
oveq2d |
|- ( ( ( ph /\ c e. A ) /\ j = 1 ) -> ( 1 ... j ) = ( 1 ... 1 ) ) |
172 |
171
|
sumeq1d |
|- ( ( ( ph /\ c e. A ) /\ j = 1 ) -> sum_ l e. ( 1 ... j ) ( c ` l ) = sum_ l e. ( 1 ... 1 ) ( c ` l ) ) |
173 |
170 172
|
oveq12d |
|- ( ( ( ph /\ c e. A ) /\ j = 1 ) -> ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) = ( 1 + sum_ l e. ( 1 ... 1 ) ( c ` l ) ) ) |
174 |
146
|
leidd |
|- ( ( ph /\ c e. A ) -> 1 <_ 1 ) |
175 |
54
|
adantr |
|- ( ( ph /\ c e. A ) -> 1 <_ K ) |
176 |
139 140 139 174 175
|
elfzd |
|- ( ( ph /\ c e. A ) -> 1 e. ( 1 ... K ) ) |
177 |
|
ovexd |
|- ( ( ph /\ c e. A ) -> ( 1 + sum_ l e. ( 1 ... 1 ) ( c ` l ) ) e. _V ) |
178 |
169 173 176 177
|
fvmptd |
|- ( ( ph /\ c e. A ) -> ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) ) ` 1 ) = ( 1 + sum_ l e. ( 1 ... 1 ) ( c ` l ) ) ) |
179 |
178
|
oveq1d |
|- ( ( ph /\ c e. A ) -> ( ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) ) ` 1 ) - 1 ) = ( ( 1 + sum_ l e. ( 1 ... 1 ) ( c ` l ) ) - 1 ) ) |
180 |
|
fzfid |
|- ( ( ph /\ c e. A ) -> ( 1 ... 1 ) e. Fin ) |
181 |
|
1zzd |
|- ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... 1 ) ) -> 1 e. ZZ ) |
182 |
140
|
adantr |
|- ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... 1 ) ) -> K e. ZZ ) |
183 |
182
|
peano2zd |
|- ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... 1 ) ) -> ( K + 1 ) e. ZZ ) |
184 |
|
elfzelz |
|- ( l e. ( 1 ... 1 ) -> l e. ZZ ) |
185 |
184
|
adantl |
|- ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... 1 ) ) -> l e. ZZ ) |
186 |
|
elfzle1 |
|- ( l e. ( 1 ... 1 ) -> 1 <_ l ) |
187 |
186
|
adantl |
|- ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... 1 ) ) -> 1 <_ l ) |
188 |
185
|
zred |
|- ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... 1 ) ) -> l e. RR ) |
189 |
|
0red |
|- ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... 1 ) ) -> 0 e. RR ) |
190 |
|
1red |
|- ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... 1 ) ) -> 1 e. RR ) |
191 |
189 190
|
readdcld |
|- ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... 1 ) ) -> ( 0 + 1 ) e. RR ) |
192 |
183
|
zred |
|- ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... 1 ) ) -> ( K + 1 ) e. RR ) |
193 |
|
elfzle2 |
|- ( l e. ( 1 ... 1 ) -> l <_ 1 ) |
194 |
193
|
adantl |
|- ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... 1 ) ) -> l <_ 1 ) |
195 |
142
|
a1i |
|- ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... 1 ) ) -> 1 = ( 0 + 1 ) ) |
196 |
194 195
|
breqtrd |
|- ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... 1 ) ) -> l <_ ( 0 + 1 ) ) |
197 |
149
|
adantr |
|- ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... 1 ) ) -> ( 0 + 1 ) <_ ( K + 1 ) ) |
198 |
188 191 192 196 197
|
letrd |
|- ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... 1 ) ) -> l <_ ( K + 1 ) ) |
199 |
181 183 185 187 198
|
elfzd |
|- ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... 1 ) ) -> l e. ( 1 ... ( K + 1 ) ) ) |
200 |
118
|
adantlr |
|- ( ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... 1 ) ) /\ l e. ( 1 ... ( K + 1 ) ) ) -> ( c ` l ) e. NN0 ) |
201 |
199 200
|
mpdan |
|- ( ( ( ph /\ c e. A ) /\ l e. ( 1 ... 1 ) ) -> ( c ` l ) e. NN0 ) |
202 |
180 201
|
fsumnn0cl |
|- ( ( ph /\ c e. A ) -> sum_ l e. ( 1 ... 1 ) ( c ` l ) e. NN0 ) |
203 |
202
|
nn0cnd |
|- ( ( ph /\ c e. A ) -> sum_ l e. ( 1 ... 1 ) ( c ` l ) e. CC ) |
204 |
122 203
|
pncan2d |
|- ( ( ph /\ c e. A ) -> ( ( 1 + sum_ l e. ( 1 ... 1 ) ( c ` l ) ) - 1 ) = sum_ l e. ( 1 ... 1 ) ( c ` l ) ) |
205 |
139 141 139 174 150
|
elfzd |
|- ( ( ph /\ c e. A ) -> 1 e. ( 1 ... ( K + 1 ) ) ) |
206 |
97 205
|
ffvelrnd |
|- ( ( ph /\ c e. A ) -> ( c ` 1 ) e. NN0 ) |
207 |
206
|
nn0cnd |
|- ( ( ph /\ c e. A ) -> ( c ` 1 ) e. CC ) |
208 |
|
fveq2 |
|- ( l = 1 -> ( c ` l ) = ( c ` 1 ) ) |
209 |
208
|
fsum1 |
|- ( ( 1 e. ZZ /\ ( c ` 1 ) e. CC ) -> sum_ l e. ( 1 ... 1 ) ( c ` l ) = ( c ` 1 ) ) |
210 |
139 207 209
|
syl2anc |
|- ( ( ph /\ c e. A ) -> sum_ l e. ( 1 ... 1 ) ( c ` l ) = ( c ` 1 ) ) |
211 |
204 210
|
eqtrd |
|- ( ( ph /\ c e. A ) -> ( ( 1 + sum_ l e. ( 1 ... 1 ) ( c ` l ) ) - 1 ) = ( c ` 1 ) ) |
212 |
179 211
|
eqtrd |
|- ( ( ph /\ c e. A ) -> ( ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) ) ` 1 ) - 1 ) = ( c ` 1 ) ) |
213 |
168 212
|
eqtrd |
|- ( ( ph /\ c e. A ) -> ( ( ( F ` c ) ` 1 ) - 1 ) = ( c ` 1 ) ) |
214 |
213
|
3adant3 |
|- ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) -> ( ( ( F ` c ) ` 1 ) - 1 ) = ( c ` 1 ) ) |
215 |
214
|
adantr |
|- ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> ( ( ( F ` c ) ` 1 ) - 1 ) = ( c ` 1 ) ) |
216 |
215
|
adantr |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ k = 1 ) -> ( ( ( F ` c ) ` 1 ) - 1 ) = ( c ` 1 ) ) |
217 |
|
simpr |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ k = 1 ) -> k = 1 ) |
218 |
217
|
fveq2d |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ k = 1 ) -> ( c ` k ) = ( c ` 1 ) ) |
219 |
218
|
eqcomd |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ k = 1 ) -> ( c ` 1 ) = ( c ` k ) ) |
220 |
216 219
|
eqtrd |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ k = 1 ) -> ( ( ( F ` c ) ` 1 ) - 1 ) = ( c ` k ) ) |
221 |
3
|
a1i |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> F = ( a e. A |-> ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) ) ) |
222 |
|
simpllr |
|- ( ( ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ a = c ) /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> a = c ) |
223 |
222
|
fveq1d |
|- ( ( ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ a = c ) /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> ( a ` l ) = ( c ` l ) ) |
224 |
223
|
sumeq2dv |
|- ( ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ a = c ) /\ j e. ( 1 ... K ) ) -> sum_ l e. ( 1 ... j ) ( a ` l ) = sum_ l e. ( 1 ... j ) ( c ` l ) ) |
225 |
224
|
oveq2d |
|- ( ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ a = c ) /\ j e. ( 1 ... K ) ) -> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) = ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) ) |
226 |
225
|
mpteq2dva |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ a = c ) -> ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) = ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) ) ) |
227 |
|
simpll2 |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> c e. A ) |
228 |
|
fzfid |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( 1 ... K ) e. Fin ) |
229 |
228
|
mptexd |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) ) e. _V ) |
230 |
221 226 227 229
|
fvmptd |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( F ` c ) = ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) ) ) |
231 |
230
|
fveq1d |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( F ` c ) ` k ) = ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) ) ` k ) ) |
232 |
230
|
fveq1d |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( F ` c ) ` ( k - 1 ) ) = ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) ) ` ( k - 1 ) ) ) |
233 |
231 232
|
oveq12d |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( ( F ` c ) ` k ) - ( ( F ` c ) ` ( k - 1 ) ) ) = ( ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) ) ` k ) - ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) ) ` ( k - 1 ) ) ) ) |
234 |
233
|
oveq1d |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( ( ( F ` c ) ` k ) - ( ( F ` c ) ` ( k - 1 ) ) ) - 1 ) = ( ( ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) ) ` k ) - ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) ) ` ( k - 1 ) ) ) - 1 ) ) |
235 |
|
eqidd |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) ) = ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) ) ) |
236 |
|
simpr |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ j = k ) -> j = k ) |
237 |
236
|
oveq2d |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ j = k ) -> ( 1 ... j ) = ( 1 ... k ) ) |
238 |
237
|
sumeq1d |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ j = k ) -> sum_ l e. ( 1 ... j ) ( c ` l ) = sum_ l e. ( 1 ... k ) ( c ` l ) ) |
239 |
236 238
|
oveq12d |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ j = k ) -> ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) = ( k + sum_ l e. ( 1 ... k ) ( c ` l ) ) ) |
240 |
|
1zzd |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> 1 e. ZZ ) |
241 |
140
|
3adant3 |
|- ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) -> K e. ZZ ) |
242 |
241
|
adantr |
|- ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> K e. ZZ ) |
243 |
242
|
adantr |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> K e. ZZ ) |
244 |
|
elfznn |
|- ( k e. ( 1 ... ( K + 1 ) ) -> k e. NN ) |
245 |
244
|
3ad2ant3 |
|- ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) -> k e. NN ) |
246 |
245
|
nnzd |
|- ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) -> k e. ZZ ) |
247 |
246
|
adantr |
|- ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> k e. ZZ ) |
248 |
247
|
adantr |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> k e. ZZ ) |
249 |
245
|
nnge1d |
|- ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) -> 1 <_ k ) |
250 |
249
|
adantr |
|- ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> 1 <_ k ) |
251 |
250
|
adantr |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> 1 <_ k ) |
252 |
|
simpl3 |
|- ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> k e. ( 1 ... ( K + 1 ) ) ) |
253 |
|
1zzd |
|- ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> 1 e. ZZ ) |
254 |
242
|
peano2zd |
|- ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> ( K + 1 ) e. ZZ ) |
255 |
|
elfz |
|- ( ( k e. ZZ /\ 1 e. ZZ /\ ( K + 1 ) e. ZZ ) -> ( k e. ( 1 ... ( K + 1 ) ) <-> ( 1 <_ k /\ k <_ ( K + 1 ) ) ) ) |
256 |
247 253 254 255
|
syl3anc |
|- ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> ( k e. ( 1 ... ( K + 1 ) ) <-> ( 1 <_ k /\ k <_ ( K + 1 ) ) ) ) |
257 |
256
|
biimpd |
|- ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> ( k e. ( 1 ... ( K + 1 ) ) -> ( 1 <_ k /\ k <_ ( K + 1 ) ) ) ) |
258 |
252 257
|
mpd |
|- ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> ( 1 <_ k /\ k <_ ( K + 1 ) ) ) |
259 |
258
|
simprd |
|- ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> k <_ ( K + 1 ) ) |
260 |
|
neqne |
|- ( -. k = ( K + 1 ) -> k =/= ( K + 1 ) ) |
261 |
260
|
adantl |
|- ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> k =/= ( K + 1 ) ) |
262 |
261
|
necomd |
|- ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> ( K + 1 ) =/= k ) |
263 |
259 262
|
jca |
|- ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> ( k <_ ( K + 1 ) /\ ( K + 1 ) =/= k ) ) |
264 |
247
|
zred |
|- ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> k e. RR ) |
265 |
254
|
zred |
|- ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> ( K + 1 ) e. RR ) |
266 |
264 265
|
ltlend |
|- ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> ( k < ( K + 1 ) <-> ( k <_ ( K + 1 ) /\ ( K + 1 ) =/= k ) ) ) |
267 |
263 266
|
mpbird |
|- ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> k < ( K + 1 ) ) |
268 |
|
zleltp1 |
|- ( ( k e. ZZ /\ K e. ZZ ) -> ( k <_ K <-> k < ( K + 1 ) ) ) |
269 |
247 242 268
|
syl2anc |
|- ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> ( k <_ K <-> k < ( K + 1 ) ) ) |
270 |
267 269
|
mpbird |
|- ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> k <_ K ) |
271 |
270
|
adantr |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> k <_ K ) |
272 |
240 243 248 251 271
|
elfzd |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> k e. ( 1 ... K ) ) |
273 |
|
ovexd |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( k + sum_ l e. ( 1 ... k ) ( c ` l ) ) e. _V ) |
274 |
235 239 272 273
|
fvmptd |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) ) ` k ) = ( k + sum_ l e. ( 1 ... k ) ( c ` l ) ) ) |
275 |
|
simpr |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ j = ( k - 1 ) ) -> j = ( k - 1 ) ) |
276 |
275
|
oveq2d |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ j = ( k - 1 ) ) -> ( 1 ... j ) = ( 1 ... ( k - 1 ) ) ) |
277 |
276
|
sumeq1d |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ j = ( k - 1 ) ) -> sum_ l e. ( 1 ... j ) ( c ` l ) = sum_ l e. ( 1 ... ( k - 1 ) ) ( c ` l ) ) |
278 |
275 277
|
oveq12d |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ j = ( k - 1 ) ) -> ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) = ( ( k - 1 ) + sum_ l e. ( 1 ... ( k - 1 ) ) ( c ` l ) ) ) |
279 |
|
1zzd |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> 1 e. ZZ ) |
280 |
53
|
ad2antrr |
|- ( ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = 1 ) -> K e. ZZ ) |
281 |
280
|
3impa |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> K e. ZZ ) |
282 |
244
|
nnzd |
|- ( k e. ( 1 ... ( K + 1 ) ) -> k e. ZZ ) |
283 |
282
|
adantl |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) ) -> k e. ZZ ) |
284 |
283
|
adantr |
|- ( ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = 1 ) -> k e. ZZ ) |
285 |
284
|
3impa |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> k e. ZZ ) |
286 |
285 279
|
zsubcld |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> ( k - 1 ) e. ZZ ) |
287 |
|
neqne |
|- ( -. k = 1 -> k =/= 1 ) |
288 |
287
|
3ad2ant3 |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> k =/= 1 ) |
289 |
108
|
3ad2ant1 |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> 1 e. RR ) |
290 |
285
|
zred |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> k e. RR ) |
291 |
|
simp2 |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> k e. ( 1 ... ( K + 1 ) ) ) |
292 |
|
elfzle1 |
|- ( k e. ( 1 ... ( K + 1 ) ) -> 1 <_ k ) |
293 |
291 292
|
syl |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> 1 <_ k ) |
294 |
289 290 293
|
leltned |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> ( 1 < k <-> k =/= 1 ) ) |
295 |
288 294
|
mpbird |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> 1 < k ) |
296 |
279 285
|
zltp1led |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> ( 1 < k <-> ( 1 + 1 ) <_ k ) ) |
297 |
295 296
|
mpbid |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> ( 1 + 1 ) <_ k ) |
298 |
|
leaddsub |
|- ( ( 1 e. RR /\ 1 e. RR /\ k e. RR ) -> ( ( 1 + 1 ) <_ k <-> 1 <_ ( k - 1 ) ) ) |
299 |
289 289 290 298
|
syl3anc |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> ( ( 1 + 1 ) <_ k <-> 1 <_ ( k - 1 ) ) ) |
300 |
297 299
|
mpbid |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> 1 <_ ( k - 1 ) ) |
301 |
286
|
zred |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> ( k - 1 ) e. RR ) |
302 |
55
|
3ad2ant1 |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> K e. RR ) |
303 |
|
1red |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> 1 e. RR ) |
304 |
302 303
|
readdcld |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> ( K + 1 ) e. RR ) |
305 |
304 303
|
resubcld |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> ( ( K + 1 ) - 1 ) e. RR ) |
306 |
|
elfzle2 |
|- ( k e. ( 1 ... ( K + 1 ) ) -> k <_ ( K + 1 ) ) |
307 |
306
|
3ad2ant2 |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> k <_ ( K + 1 ) ) |
308 |
290 304 303 307
|
lesub1dd |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> ( k - 1 ) <_ ( ( K + 1 ) - 1 ) ) |
309 |
64
|
3ad2ant1 |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> K e. CC ) |
310 |
|
1cnd |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> 1 e. CC ) |
311 |
309 310
|
pncand |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> ( ( K + 1 ) - 1 ) = K ) |
312 |
56
|
3ad2ant1 |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> K <_ K ) |
313 |
311 312
|
eqbrtrd |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> ( ( K + 1 ) - 1 ) <_ K ) |
314 |
301 305 302 308 313
|
letrd |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> ( k - 1 ) <_ K ) |
315 |
279 281 286 300 314
|
elfzd |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> ( k - 1 ) e. ( 1 ... K ) ) |
316 |
315
|
3expa |
|- ( ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = 1 ) -> ( k - 1 ) e. ( 1 ... K ) ) |
317 |
316
|
3adantl2 |
|- ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = 1 ) -> ( k - 1 ) e. ( 1 ... K ) ) |
318 |
317
|
adantlr |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( k - 1 ) e. ( 1 ... K ) ) |
319 |
|
ovexd |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( k - 1 ) + sum_ l e. ( 1 ... ( k - 1 ) ) ( c ` l ) ) e. _V ) |
320 |
235 278 318 319
|
fvmptd |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) ) ` ( k - 1 ) ) = ( ( k - 1 ) + sum_ l e. ( 1 ... ( k - 1 ) ) ( c ` l ) ) ) |
321 |
274 320
|
oveq12d |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) ) ` k ) - ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) ) ` ( k - 1 ) ) ) = ( ( k + sum_ l e. ( 1 ... k ) ( c ` l ) ) - ( ( k - 1 ) + sum_ l e. ( 1 ... ( k - 1 ) ) ( c ` l ) ) ) ) |
322 |
321
|
oveq1d |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) ) ` k ) - ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) ) ` ( k - 1 ) ) ) - 1 ) = ( ( ( k + sum_ l e. ( 1 ... k ) ( c ` l ) ) - ( ( k - 1 ) + sum_ l e. ( 1 ... ( k - 1 ) ) ( c ` l ) ) ) - 1 ) ) |
323 |
248
|
zcnd |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> k e. CC ) |
324 |
|
fzfid |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( 1 ... k ) e. Fin ) |
325 |
|
1zzd |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... k ) ) -> 1 e. ZZ ) |
326 |
243
|
adantr |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... k ) ) -> K e. ZZ ) |
327 |
326
|
peano2zd |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... k ) ) -> ( K + 1 ) e. ZZ ) |
328 |
|
elfznn |
|- ( l e. ( 1 ... k ) -> l e. NN ) |
329 |
328
|
adantl |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... k ) ) -> l e. NN ) |
330 |
329
|
nnzd |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... k ) ) -> l e. ZZ ) |
331 |
329
|
nnge1d |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... k ) ) -> 1 <_ l ) |
332 |
329
|
nnred |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... k ) ) -> l e. RR ) |
333 |
264
|
ad2antrr |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... k ) ) -> k e. RR ) |
334 |
265
|
ad2antrr |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... k ) ) -> ( K + 1 ) e. RR ) |
335 |
|
elfzle2 |
|- ( l e. ( 1 ... k ) -> l <_ k ) |
336 |
335
|
adantl |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... k ) ) -> l <_ k ) |
337 |
259
|
ad2antrr |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... k ) ) -> k <_ ( K + 1 ) ) |
338 |
332 333 334 336 337
|
letrd |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... k ) ) -> l <_ ( K + 1 ) ) |
339 |
325 327 330 331 338
|
elfzd |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... k ) ) -> l e. ( 1 ... ( K + 1 ) ) ) |
340 |
97
|
3adant3 |
|- ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) -> c : ( 1 ... ( K + 1 ) ) --> NN0 ) |
341 |
340
|
adantr |
|- ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> c : ( 1 ... ( K + 1 ) ) --> NN0 ) |
342 |
341
|
adantr |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> c : ( 1 ... ( K + 1 ) ) --> NN0 ) |
343 |
342
|
adantr |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... k ) ) -> c : ( 1 ... ( K + 1 ) ) --> NN0 ) |
344 |
343
|
ffvelrnda |
|- ( ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... k ) ) /\ l e. ( 1 ... ( K + 1 ) ) ) -> ( c ` l ) e. NN0 ) |
345 |
339 344
|
mpdan |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... k ) ) -> ( c ` l ) e. NN0 ) |
346 |
324 345
|
fsumnn0cl |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> sum_ l e. ( 1 ... k ) ( c ` l ) e. NN0 ) |
347 |
346
|
nn0cnd |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> sum_ l e. ( 1 ... k ) ( c ` l ) e. CC ) |
348 |
|
1cnd |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> 1 e. CC ) |
349 |
323 348
|
subcld |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( k - 1 ) e. CC ) |
350 |
|
fzfid |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( 1 ... ( k - 1 ) ) e. Fin ) |
351 |
|
1zzd |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... ( k - 1 ) ) ) -> 1 e. ZZ ) |
352 |
243
|
adantr |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... ( k - 1 ) ) ) -> K e. ZZ ) |
353 |
352
|
peano2zd |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... ( k - 1 ) ) ) -> ( K + 1 ) e. ZZ ) |
354 |
|
elfznn |
|- ( l e. ( 1 ... ( k - 1 ) ) -> l e. NN ) |
355 |
354
|
adantl |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... ( k - 1 ) ) ) -> l e. NN ) |
356 |
355
|
nnzd |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... ( k - 1 ) ) ) -> l e. ZZ ) |
357 |
355
|
nnge1d |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... ( k - 1 ) ) ) -> 1 <_ l ) |
358 |
355
|
nnred |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... ( k - 1 ) ) ) -> l e. RR ) |
359 |
264
|
ad2antrr |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... ( k - 1 ) ) ) -> k e. RR ) |
360 |
|
1red |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... ( k - 1 ) ) ) -> 1 e. RR ) |
361 |
359 360
|
resubcld |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... ( k - 1 ) ) ) -> ( k - 1 ) e. RR ) |
362 |
265
|
ad2antrr |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... ( k - 1 ) ) ) -> ( K + 1 ) e. RR ) |
363 |
|
elfzle2 |
|- ( l e. ( 1 ... ( k - 1 ) ) -> l <_ ( k - 1 ) ) |
364 |
363
|
adantl |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... ( k - 1 ) ) ) -> l <_ ( k - 1 ) ) |
365 |
359
|
lem1d |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... ( k - 1 ) ) ) -> ( k - 1 ) <_ k ) |
366 |
259
|
ad2antrr |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... ( k - 1 ) ) ) -> k <_ ( K + 1 ) ) |
367 |
361 359 362 365 366
|
letrd |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... ( k - 1 ) ) ) -> ( k - 1 ) <_ ( K + 1 ) ) |
368 |
358 361 362 364 367
|
letrd |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... ( k - 1 ) ) ) -> l <_ ( K + 1 ) ) |
369 |
351 353 356 357 368
|
elfzd |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... ( k - 1 ) ) ) -> l e. ( 1 ... ( K + 1 ) ) ) |
370 |
342
|
adantr |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... ( k - 1 ) ) ) -> c : ( 1 ... ( K + 1 ) ) --> NN0 ) |
371 |
370
|
ffvelrnda |
|- ( ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... ( k - 1 ) ) ) /\ l e. ( 1 ... ( K + 1 ) ) ) -> ( c ` l ) e. NN0 ) |
372 |
369 371
|
mpdan |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... ( k - 1 ) ) ) -> ( c ` l ) e. NN0 ) |
373 |
350 372
|
fsumnn0cl |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> sum_ l e. ( 1 ... ( k - 1 ) ) ( c ` l ) e. NN0 ) |
374 |
373
|
nn0cnd |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> sum_ l e. ( 1 ... ( k - 1 ) ) ( c ` l ) e. CC ) |
375 |
323 347 349 374
|
addsub4d |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( k + sum_ l e. ( 1 ... k ) ( c ` l ) ) - ( ( k - 1 ) + sum_ l e. ( 1 ... ( k - 1 ) ) ( c ` l ) ) ) = ( ( k - ( k - 1 ) ) + ( sum_ l e. ( 1 ... k ) ( c ` l ) - sum_ l e. ( 1 ... ( k - 1 ) ) ( c ` l ) ) ) ) |
376 |
375
|
oveq1d |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( ( k + sum_ l e. ( 1 ... k ) ( c ` l ) ) - ( ( k - 1 ) + sum_ l e. ( 1 ... ( k - 1 ) ) ( c ` l ) ) ) - 1 ) = ( ( ( k - ( k - 1 ) ) + ( sum_ l e. ( 1 ... k ) ( c ` l ) - sum_ l e. ( 1 ... ( k - 1 ) ) ( c ` l ) ) ) - 1 ) ) |
377 |
323 348
|
nncand |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( k - ( k - 1 ) ) = 1 ) |
378 |
377
|
oveq1d |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( k - ( k - 1 ) ) + ( sum_ l e. ( 1 ... k ) ( c ` l ) - sum_ l e. ( 1 ... ( k - 1 ) ) ( c ` l ) ) ) = ( 1 + ( sum_ l e. ( 1 ... k ) ( c ` l ) - sum_ l e. ( 1 ... ( k - 1 ) ) ( c ` l ) ) ) ) |
379 |
378
|
oveq1d |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( ( k - ( k - 1 ) ) + ( sum_ l e. ( 1 ... k ) ( c ` l ) - sum_ l e. ( 1 ... ( k - 1 ) ) ( c ` l ) ) ) - 1 ) = ( ( 1 + ( sum_ l e. ( 1 ... k ) ( c ` l ) - sum_ l e. ( 1 ... ( k - 1 ) ) ( c ` l ) ) ) - 1 ) ) |
380 |
347 374
|
subcld |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( sum_ l e. ( 1 ... k ) ( c ` l ) - sum_ l e. ( 1 ... ( k - 1 ) ) ( c ` l ) ) e. CC ) |
381 |
348 380
|
pncan2d |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( 1 + ( sum_ l e. ( 1 ... k ) ( c ` l ) - sum_ l e. ( 1 ... ( k - 1 ) ) ( c ` l ) ) ) - 1 ) = ( sum_ l e. ( 1 ... k ) ( c ` l ) - sum_ l e. ( 1 ... ( k - 1 ) ) ( c ` l ) ) ) |
382 |
139
|
3adant3 |
|- ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) -> 1 e. ZZ ) |
383 |
382 246 249
|
3jca |
|- ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) -> ( 1 e. ZZ /\ k e. ZZ /\ 1 <_ k ) ) |
384 |
|
eluz2 |
|- ( k e. ( ZZ>= ` 1 ) <-> ( 1 e. ZZ /\ k e. ZZ /\ 1 <_ k ) ) |
385 |
383 384
|
sylibr |
|- ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) -> k e. ( ZZ>= ` 1 ) ) |
386 |
385
|
adantr |
|- ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> k e. ( ZZ>= ` 1 ) ) |
387 |
386
|
adantr |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> k e. ( ZZ>= ` 1 ) ) |
388 |
345
|
nn0cnd |
|- ( ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) /\ l e. ( 1 ... k ) ) -> ( c ` l ) e. CC ) |
389 |
|
fveq2 |
|- ( l = k -> ( c ` l ) = ( c ` k ) ) |
390 |
387 388 389
|
fsumm1 |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> sum_ l e. ( 1 ... k ) ( c ` l ) = ( sum_ l e. ( 1 ... ( k - 1 ) ) ( c ` l ) + ( c ` k ) ) ) |
391 |
390
|
eqcomd |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( sum_ l e. ( 1 ... ( k - 1 ) ) ( c ` l ) + ( c ` k ) ) = sum_ l e. ( 1 ... k ) ( c ` l ) ) |
392 |
|
simp3 |
|- ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) -> k e. ( 1 ... ( K + 1 ) ) ) |
393 |
340 392
|
ffvelrnd |
|- ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) -> ( c ` k ) e. NN0 ) |
394 |
393
|
nn0cnd |
|- ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) -> ( c ` k ) e. CC ) |
395 |
394
|
adantr |
|- ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> ( c ` k ) e. CC ) |
396 |
395
|
adantr |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( c ` k ) e. CC ) |
397 |
347 374 396
|
subaddd |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( sum_ l e. ( 1 ... k ) ( c ` l ) - sum_ l e. ( 1 ... ( k - 1 ) ) ( c ` l ) ) = ( c ` k ) <-> ( sum_ l e. ( 1 ... ( k - 1 ) ) ( c ` l ) + ( c ` k ) ) = sum_ l e. ( 1 ... k ) ( c ` l ) ) ) |
398 |
391 397
|
mpbird |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( sum_ l e. ( 1 ... k ) ( c ` l ) - sum_ l e. ( 1 ... ( k - 1 ) ) ( c ` l ) ) = ( c ` k ) ) |
399 |
381 398
|
eqtrd |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( 1 + ( sum_ l e. ( 1 ... k ) ( c ` l ) - sum_ l e. ( 1 ... ( k - 1 ) ) ( c ` l ) ) ) - 1 ) = ( c ` k ) ) |
400 |
379 399
|
eqtrd |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( ( k - ( k - 1 ) ) + ( sum_ l e. ( 1 ... k ) ( c ` l ) - sum_ l e. ( 1 ... ( k - 1 ) ) ( c ` l ) ) ) - 1 ) = ( c ` k ) ) |
401 |
376 400
|
eqtrd |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( ( k + sum_ l e. ( 1 ... k ) ( c ` l ) ) - ( ( k - 1 ) + sum_ l e. ( 1 ... ( k - 1 ) ) ( c ` l ) ) ) - 1 ) = ( c ` k ) ) |
402 |
322 401
|
eqtrd |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) ) ` k ) - ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( c ` l ) ) ) ` ( k - 1 ) ) ) - 1 ) = ( c ` k ) ) |
403 |
234 402
|
eqtrd |
|- ( ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( ( ( F ` c ) ` k ) - ( ( F ` c ) ` ( k - 1 ) ) ) - 1 ) = ( c ` k ) ) |
404 |
220 403
|
ifeqda |
|- ( ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> if ( k = 1 , ( ( ( F ` c ) ` 1 ) - 1 ) , ( ( ( ( F ` c ) ` k ) - ( ( F ` c ) ` ( k - 1 ) ) ) - 1 ) ) = ( c ` k ) ) |
405 |
166 404
|
ifeqda |
|- ( ( ph /\ c e. A /\ k e. ( 1 ... ( K + 1 ) ) ) -> if ( k = ( K + 1 ) , ( ( N + K ) - ( ( F ` c ) ` K ) ) , if ( k = 1 , ( ( ( F ` c ) ` 1 ) - 1 ) , ( ( ( ( F ` c ) ` k ) - ( ( F ` c ) ` ( k - 1 ) ) ) - 1 ) ) ) = ( c ` k ) ) |
406 |
405
|
3expa |
|- ( ( ( ph /\ c e. A ) /\ k e. ( 1 ... ( K + 1 ) ) ) -> if ( k = ( K + 1 ) , ( ( N + K ) - ( ( F ` c ) ` K ) ) , if ( k = 1 , ( ( ( F ` c ) ` 1 ) - 1 ) , ( ( ( ( F ` c ) ` k ) - ( ( F ` c ) ` ( k - 1 ) ) ) - 1 ) ) ) = ( c ` k ) ) |
407 |
406
|
mpteq2dva |
|- ( ( ph /\ c e. A ) -> ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( ( F ` c ) ` K ) ) , if ( k = 1 , ( ( ( F ` c ) ` 1 ) - 1 ) , ( ( ( ( F ` c ) ` k ) - ( ( F ` c ) ` ( k - 1 ) ) ) - 1 ) ) ) ) = ( k e. ( 1 ... ( K + 1 ) ) |-> ( c ` k ) ) ) |
408 |
97
|
ffnd |
|- ( ( ph /\ c e. A ) -> c Fn ( 1 ... ( K + 1 ) ) ) |
409 |
|
dffn5 |
|- ( c Fn ( 1 ... ( K + 1 ) ) <-> c = ( k e. ( 1 ... ( K + 1 ) ) |-> ( c ` k ) ) ) |
410 |
409
|
biimpi |
|- ( c Fn ( 1 ... ( K + 1 ) ) -> c = ( k e. ( 1 ... ( K + 1 ) ) |-> ( c ` k ) ) ) |
411 |
408 410
|
syl |
|- ( ( ph /\ c e. A ) -> c = ( k e. ( 1 ... ( K + 1 ) ) |-> ( c ` k ) ) ) |
412 |
411
|
eqcomd |
|- ( ( ph /\ c e. A ) -> ( k e. ( 1 ... ( K + 1 ) ) |-> ( c ` k ) ) = c ) |
413 |
407 412
|
eqtrd |
|- ( ( ph /\ c e. A ) -> ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( ( F ` c ) ` K ) ) , if ( k = 1 , ( ( ( F ` c ) ` 1 ) - 1 ) , ( ( ( ( F ` c ) ` k ) - ( ( F ` c ) ` ( k - 1 ) ) ) - 1 ) ) ) ) = c ) |
414 |
37 413
|
eqtrd |
|- ( ( ph /\ c e. A ) -> ( G ` ( F ` c ) ) = c ) |
415 |
414
|
ralrimiva |
|- ( ph -> A. c e. A ( G ` ( F ` c ) ) = c ) |
416 |
1 2 3 4 5 6
|
sticksstones12a |
|- ( ph -> A. d e. B ( F ` ( G ` d ) ) = d ) |
417 |
8 9 415 416
|
2fvidf1od |
|- ( ph -> F : A -1-1-onto-> B ) |