| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sticksstones12.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 2 |
|
sticksstones12.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
| 3 |
|
sticksstones12.3 |
⊢ 𝐹 = ( 𝑎 ∈ 𝐴 ↦ ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ) |
| 4 |
|
sticksstones12.4 |
⊢ 𝐺 = ( 𝑏 ∈ 𝐵 ↦ if ( 𝐾 = 0 , { 〈 1 , 𝑁 〉 } , ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) ) |
| 5 |
|
sticksstones12.5 |
⊢ 𝐴 = { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } |
| 6 |
|
sticksstones12.6 |
⊢ 𝐵 = { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) } |
| 7 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
| 8 |
1 7 3 5 6
|
sticksstones8 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 9 |
1 2 4 5 6
|
sticksstones10 |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
| 10 |
4
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( 𝑏 ∈ 𝐵 ↦ if ( 𝐾 = 0 , { 〈 1 , 𝑁 〉 } , ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) ) ) |
| 11 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 12 |
2
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝐾 ) |
| 13 |
11 12
|
ltned |
⊢ ( 𝜑 → 0 ≠ 𝐾 ) |
| 14 |
13
|
necomd |
⊢ ( 𝜑 → 𝐾 ≠ 0 ) |
| 15 |
14
|
neneqd |
⊢ ( 𝜑 → ¬ 𝐾 = 0 ) |
| 16 |
15
|
iffalsed |
⊢ ( 𝜑 → if ( 𝐾 = 0 , { 〈 1 , 𝑁 〉 } , ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → if ( 𝐾 = 0 , { 〈 1 , 𝑁 〉 } , ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) |
| 18 |
17
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐵 ↦ if ( 𝐾 = 0 , { 〈 1 , 𝑁 〉 } , ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) ) = ( 𝑏 ∈ 𝐵 ↦ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) ) |
| 19 |
10 18
|
eqtrd |
⊢ ( 𝜑 → 𝐺 = ( 𝑏 ∈ 𝐵 ↦ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝐺 = ( 𝑏 ∈ 𝐵 ↦ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) ) |
| 21 |
|
fveq1 |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑐 ) → ( 𝑏 ‘ 𝐾 ) = ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) |
| 22 |
21
|
oveq2d |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑐 ) → ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) = ( ( 𝑁 + 𝐾 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) ) |
| 23 |
|
fveq1 |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑐 ) → ( 𝑏 ‘ 1 ) = ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) ) |
| 24 |
23
|
oveq1d |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑐 ) → ( ( 𝑏 ‘ 1 ) − 1 ) = ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) ) |
| 25 |
|
fveq1 |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑐 ) → ( 𝑏 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) ) |
| 26 |
|
fveq1 |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑐 ) → ( 𝑏 ‘ ( 𝑘 − 1 ) ) = ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) |
| 27 |
25 26
|
oveq12d |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑐 ) → ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) = ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) ) |
| 28 |
27
|
oveq1d |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑐 ) → ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) = ( ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) |
| 29 |
24 28
|
ifeq12d |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑐 ) → if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = if ( 𝑘 = 1 , ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) , ( ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) |
| 30 |
22 29
|
ifeq12d |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑐 ) → if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) , ( ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝑏 = ( 𝐹 ‘ 𝑐 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) , ( ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) |
| 32 |
31
|
mpteq2dva |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑐 ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) , ( ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) |
| 33 |
32
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑏 = ( 𝐹 ‘ 𝑐 ) ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) , ( ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) |
| 34 |
8
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑐 ) ∈ 𝐵 ) |
| 35 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 1 ... ( 𝐾 + 1 ) ) ∈ Fin ) |
| 36 |
35
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) , ( ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ∈ V ) |
| 37 |
20 33 34 36
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑐 ) ) = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) , ( ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) |
| 38 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝐹 = ( 𝑎 ∈ 𝐴 ↦ ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ) ) |
| 39 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑎 = 𝑐 ) ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑎 = 𝑐 ) |
| 40 |
39
|
fveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑎 = 𝑐 ) ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → ( 𝑎 ‘ 𝑙 ) = ( 𝑐 ‘ 𝑙 ) ) |
| 41 |
40
|
sumeq2dv |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑎 = 𝑐 ) ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) = Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) |
| 42 |
41
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑎 = 𝑐 ) ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) = ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) |
| 43 |
42
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑎 = 𝑐 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ) |
| 44 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝑐 ∈ 𝐴 ) |
| 45 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 1 ... 𝐾 ) ∈ Fin ) |
| 46 |
45
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ∈ V ) |
| 47 |
38 43 44 46
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑐 ) = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ) |
| 48 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑗 = 𝐾 ) → 𝑗 = 𝐾 ) |
| 49 |
48
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑗 = 𝐾 ) → ( 1 ... 𝑗 ) = ( 1 ... 𝐾 ) ) |
| 50 |
49
|
sumeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑗 = 𝐾 ) → Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) = Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) ) |
| 51 |
48 50
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑗 = 𝐾 ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) = ( 𝐾 + Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) ) ) |
| 52 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 53 |
7
|
nn0zd |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
| 54 |
2
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝐾 ) |
| 55 |
2
|
nnred |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
| 56 |
55
|
leidd |
⊢ ( 𝜑 → 𝐾 ≤ 𝐾 ) |
| 57 |
52 53 53 54 56
|
elfzd |
⊢ ( 𝜑 → 𝐾 ∈ ( 1 ... 𝐾 ) ) |
| 58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝐾 ∈ ( 1 ... 𝐾 ) ) |
| 59 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝐾 + Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) ) ∈ V ) |
| 60 |
47 51 58 59
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) = ( 𝐾 + Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) ) ) |
| 61 |
60
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( 𝑁 + 𝐾 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) = ( ( 𝑁 + 𝐾 ) − ( 𝐾 + Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) ) ) ) |
| 62 |
1
|
nn0cnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 63 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝑁 ∈ ℂ ) |
| 64 |
55
|
recnd |
⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
| 65 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝐾 ∈ ℂ ) |
| 66 |
63 65
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑁 + 𝐾 ) = ( 𝐾 + 𝑁 ) ) |
| 67 |
66
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( 𝑁 + 𝐾 ) − ( 𝐾 + Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) ) ) = ( ( 𝐾 + 𝑁 ) − ( 𝐾 + Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) ) ) ) |
| 68 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 𝐾 ) ) → 1 ∈ ℤ ) |
| 69 |
53
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 𝐾 ) ) → 𝐾 ∈ ℤ ) |
| 70 |
69
|
peano2zd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 𝐾 ) ) → ( 𝐾 + 1 ) ∈ ℤ ) |
| 71 |
|
elfzelz |
⊢ ( 𝑙 ∈ ( 1 ... 𝐾 ) → 𝑙 ∈ ℤ ) |
| 72 |
71
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 𝐾 ) ) → 𝑙 ∈ ℤ ) |
| 73 |
|
elfzle1 |
⊢ ( 𝑙 ∈ ( 1 ... 𝐾 ) → 1 ≤ 𝑙 ) |
| 74 |
73
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 𝐾 ) ) → 1 ≤ 𝑙 ) |
| 75 |
72
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 𝐾 ) ) → 𝑙 ∈ ℝ ) |
| 76 |
55
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 𝐾 ) ) → 𝐾 ∈ ℝ ) |
| 77 |
70
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 𝐾 ) ) → ( 𝐾 + 1 ) ∈ ℝ ) |
| 78 |
|
elfzle2 |
⊢ ( 𝑙 ∈ ( 1 ... 𝐾 ) → 𝑙 ≤ 𝐾 ) |
| 79 |
78
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 𝐾 ) ) → 𝑙 ≤ 𝐾 ) |
| 80 |
76
|
lep1d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 𝐾 ) ) → 𝐾 ≤ ( 𝐾 + 1 ) ) |
| 81 |
75 76 77 79 80
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 𝐾 ) ) → 𝑙 ≤ ( 𝐾 + 1 ) ) |
| 82 |
68 70 72 74 81
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 𝐾 ) ) → 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
| 83 |
5
|
eleq2i |
⊢ ( 𝑐 ∈ 𝐴 ↔ 𝑐 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ) |
| 84 |
83
|
biimpi |
⊢ ( 𝑐 ∈ 𝐴 → 𝑐 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ) |
| 85 |
84
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝑐 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ) |
| 86 |
|
vex |
⊢ 𝑐 ∈ V |
| 87 |
|
feq1 |
⊢ ( 𝑔 = 𝑐 → ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ↔ 𝑐 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) ) |
| 88 |
|
simpl |
⊢ ( ( 𝑔 = 𝑐 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑔 = 𝑐 ) |
| 89 |
88
|
fveq1d |
⊢ ( ( 𝑔 = 𝑐 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑔 ‘ 𝑖 ) = ( 𝑐 ‘ 𝑖 ) ) |
| 90 |
89
|
sumeq2dv |
⊢ ( 𝑔 = 𝑐 → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑐 ‘ 𝑖 ) ) |
| 91 |
90
|
eqeq1d |
⊢ ( 𝑔 = 𝑐 → ( Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ↔ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑐 ‘ 𝑖 ) = 𝑁 ) ) |
| 92 |
87 91
|
anbi12d |
⊢ ( 𝑔 = 𝑐 → ( ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) ↔ ( 𝑐 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑐 ‘ 𝑖 ) = 𝑁 ) ) ) |
| 93 |
86 92
|
elab |
⊢ ( 𝑐 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ↔ ( 𝑐 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑐 ‘ 𝑖 ) = 𝑁 ) ) |
| 94 |
93
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ↔ ( 𝑐 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑐 ‘ 𝑖 ) = 𝑁 ) ) ) |
| 95 |
94
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } → ( 𝑐 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑐 ‘ 𝑖 ) = 𝑁 ) ) ) |
| 96 |
85 95
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑐 ‘ 𝑖 ) = 𝑁 ) ) |
| 97 |
96
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝑐 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) |
| 98 |
97
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 𝐾 ) ) → 𝑐 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) |
| 99 |
98
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑐 ‘ 𝑙 ) ∈ ℕ0 ) |
| 100 |
82 99
|
mpdan |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 𝐾 ) ) → ( 𝑐 ‘ 𝑙 ) ∈ ℕ0 ) |
| 101 |
45 100
|
fsumnn0cl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) ∈ ℕ0 ) |
| 102 |
101
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) ∈ ℂ ) |
| 103 |
65 63 102
|
pnpcand |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( 𝐾 + 𝑁 ) − ( 𝐾 + Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) ) ) = ( 𝑁 − Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) ) ) |
| 104 |
|
eqid |
⊢ 1 = 1 |
| 105 |
|
1p0e1 |
⊢ ( 1 + 0 ) = 1 |
| 106 |
104 105
|
eqtr4i |
⊢ 1 = ( 1 + 0 ) |
| 107 |
106
|
a1i |
⊢ ( 𝜑 → 1 = ( 1 + 0 ) ) |
| 108 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 109 |
|
0le1 |
⊢ 0 ≤ 1 |
| 110 |
109
|
a1i |
⊢ ( 𝜑 → 0 ≤ 1 ) |
| 111 |
108 11 55 108 54 110
|
le2addd |
⊢ ( 𝜑 → ( 1 + 0 ) ≤ ( 𝐾 + 1 ) ) |
| 112 |
107 111
|
eqbrtrd |
⊢ ( 𝜑 → 1 ≤ ( 𝐾 + 1 ) ) |
| 113 |
53
|
peano2zd |
⊢ ( 𝜑 → ( 𝐾 + 1 ) ∈ ℤ ) |
| 114 |
|
eluz |
⊢ ( ( 1 ∈ ℤ ∧ ( 𝐾 + 1 ) ∈ ℤ ) → ( ( 𝐾 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ↔ 1 ≤ ( 𝐾 + 1 ) ) ) |
| 115 |
52 113 114
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐾 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ↔ 1 ≤ ( 𝐾 + 1 ) ) ) |
| 116 |
112 115
|
mpbird |
⊢ ( 𝜑 → ( 𝐾 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 117 |
116
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝐾 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 118 |
97
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑐 ‘ 𝑙 ) ∈ ℕ0 ) |
| 119 |
118
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑐 ‘ 𝑙 ) ∈ ℂ ) |
| 120 |
|
fveq2 |
⊢ ( 𝑙 = ( 𝐾 + 1 ) → ( 𝑐 ‘ 𝑙 ) = ( 𝑐 ‘ ( 𝐾 + 1 ) ) ) |
| 121 |
117 119 120
|
fsumm1 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → Σ 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑐 ‘ 𝑙 ) = ( Σ 𝑙 ∈ ( 1 ... ( ( 𝐾 + 1 ) − 1 ) ) ( 𝑐 ‘ 𝑙 ) + ( 𝑐 ‘ ( 𝐾 + 1 ) ) ) ) |
| 122 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 1 ∈ ℂ ) |
| 123 |
65 122
|
pncand |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( 𝐾 + 1 ) − 1 ) = 𝐾 ) |
| 124 |
123
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 1 ... ( ( 𝐾 + 1 ) − 1 ) ) = ( 1 ... 𝐾 ) ) |
| 125 |
124
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → Σ 𝑙 ∈ ( 1 ... ( ( 𝐾 + 1 ) − 1 ) ) ( 𝑐 ‘ 𝑙 ) = Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) ) |
| 126 |
125
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( Σ 𝑙 ∈ ( 1 ... ( ( 𝐾 + 1 ) − 1 ) ) ( 𝑐 ‘ 𝑙 ) + ( 𝑐 ‘ ( 𝐾 + 1 ) ) ) = ( Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) + ( 𝑐 ‘ ( 𝐾 + 1 ) ) ) ) |
| 127 |
121 126
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → Σ 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑐 ‘ 𝑙 ) = ( Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) + ( 𝑐 ‘ ( 𝐾 + 1 ) ) ) ) |
| 128 |
127
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) + ( 𝑐 ‘ ( 𝐾 + 1 ) ) ) = Σ 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑐 ‘ 𝑙 ) ) |
| 129 |
|
fveq2 |
⊢ ( 𝑙 = 𝑖 → ( 𝑐 ‘ 𝑙 ) = ( 𝑐 ‘ 𝑖 ) ) |
| 130 |
|
nfcv |
⊢ Ⅎ 𝑖 ( 𝑐 ‘ 𝑙 ) |
| 131 |
|
nfcv |
⊢ Ⅎ 𝑙 ( 𝑐 ‘ 𝑖 ) |
| 132 |
129 130 131
|
cbvsum |
⊢ Σ 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑐 ‘ 𝑙 ) = Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑐 ‘ 𝑖 ) |
| 133 |
132
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → Σ 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑐 ‘ 𝑙 ) = Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑐 ‘ 𝑖 ) ) |
| 134 |
96
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑐 ‘ 𝑖 ) = 𝑁 ) |
| 135 |
133 134
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → Σ 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑐 ‘ 𝑙 ) = 𝑁 ) |
| 136 |
128 135
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) + ( 𝑐 ‘ ( 𝐾 + 1 ) ) ) = 𝑁 ) |
| 137 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 1 ∈ ℤ ) |
| 138 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝐾 ∈ ℤ ) |
| 139 |
138
|
peano2zd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝐾 + 1 ) ∈ ℤ ) |
| 140 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
| 141 |
140
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 1 = ( 0 + 1 ) ) |
| 142 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 0 ∈ ℝ ) |
| 143 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝐾 ∈ ℝ ) |
| 144 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 1 ∈ ℝ ) |
| 145 |
11 55 12
|
ltled |
⊢ ( 𝜑 → 0 ≤ 𝐾 ) |
| 146 |
145
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 0 ≤ 𝐾 ) |
| 147 |
142 143 144 146
|
leadd1dd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 0 + 1 ) ≤ ( 𝐾 + 1 ) ) |
| 148 |
141 147
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 1 ≤ ( 𝐾 + 1 ) ) |
| 149 |
55 55 108 56
|
leadd1dd |
⊢ ( 𝜑 → ( 𝐾 + 1 ) ≤ ( 𝐾 + 1 ) ) |
| 150 |
149
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝐾 + 1 ) ≤ ( 𝐾 + 1 ) ) |
| 151 |
137 139 139 148 150
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝐾 + 1 ) ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
| 152 |
97 151
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ‘ ( 𝐾 + 1 ) ) ∈ ℕ0 ) |
| 153 |
152
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ‘ ( 𝐾 + 1 ) ) ∈ ℂ ) |
| 154 |
63 102 153
|
subaddd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( 𝑁 − Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) ) = ( 𝑐 ‘ ( 𝐾 + 1 ) ) ↔ ( Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) + ( 𝑐 ‘ ( 𝐾 + 1 ) ) ) = 𝑁 ) ) |
| 155 |
136 154
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑁 − Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) ) = ( 𝑐 ‘ ( 𝐾 + 1 ) ) ) |
| 156 |
103 155
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( 𝐾 + 𝑁 ) − ( 𝐾 + Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) ) ) = ( 𝑐 ‘ ( 𝐾 + 1 ) ) ) |
| 157 |
67 156
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( 𝑁 + 𝐾 ) − ( 𝐾 + Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) ) ) = ( 𝑐 ‘ ( 𝐾 + 1 ) ) ) |
| 158 |
61 157
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( 𝑁 + 𝐾 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) = ( 𝑐 ‘ ( 𝐾 + 1 ) ) ) |
| 159 |
158
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( ( 𝑁 + 𝐾 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) = ( 𝑐 ‘ ( 𝐾 + 1 ) ) ) |
| 160 |
159
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = ( 𝐾 + 1 ) ) → ( ( 𝑁 + 𝐾 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) = ( 𝑐 ‘ ( 𝐾 + 1 ) ) ) |
| 161 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 = ( 𝐾 + 1 ) ) |
| 162 |
161
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝑐 ‘ 𝑘 ) = ( 𝑐 ‘ ( 𝐾 + 1 ) ) ) |
| 163 |
162
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝑐 ‘ ( 𝐾 + 1 ) ) = ( 𝑐 ‘ 𝑘 ) ) |
| 164 |
160 163
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = ( 𝐾 + 1 ) ) → ( ( 𝑁 + 𝐾 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) = ( 𝑐 ‘ 𝑘 ) ) |
| 165 |
47
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) = ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ 1 ) ) |
| 166 |
165
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) = ( ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ 1 ) − 1 ) ) |
| 167 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ) |
| 168 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑗 = 1 ) → 𝑗 = 1 ) |
| 169 |
168
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑗 = 1 ) → ( 1 ... 𝑗 ) = ( 1 ... 1 ) ) |
| 170 |
169
|
sumeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑗 = 1 ) → Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) = Σ 𝑙 ∈ ( 1 ... 1 ) ( 𝑐 ‘ 𝑙 ) ) |
| 171 |
168 170
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑗 = 1 ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) = ( 1 + Σ 𝑙 ∈ ( 1 ... 1 ) ( 𝑐 ‘ 𝑙 ) ) ) |
| 172 |
144
|
leidd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 1 ≤ 1 ) |
| 173 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 1 ≤ 𝐾 ) |
| 174 |
137 138 137 172 173
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 1 ∈ ( 1 ... 𝐾 ) ) |
| 175 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 1 + Σ 𝑙 ∈ ( 1 ... 1 ) ( 𝑐 ‘ 𝑙 ) ) ∈ V ) |
| 176 |
167 171 174 175
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ 1 ) = ( 1 + Σ 𝑙 ∈ ( 1 ... 1 ) ( 𝑐 ‘ 𝑙 ) ) ) |
| 177 |
176
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ 1 ) − 1 ) = ( ( 1 + Σ 𝑙 ∈ ( 1 ... 1 ) ( 𝑐 ‘ 𝑙 ) ) − 1 ) ) |
| 178 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 1 ... 1 ) ∈ Fin ) |
| 179 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → 1 ∈ ℤ ) |
| 180 |
138
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → 𝐾 ∈ ℤ ) |
| 181 |
180
|
peano2zd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → ( 𝐾 + 1 ) ∈ ℤ ) |
| 182 |
|
elfzelz |
⊢ ( 𝑙 ∈ ( 1 ... 1 ) → 𝑙 ∈ ℤ ) |
| 183 |
182
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → 𝑙 ∈ ℤ ) |
| 184 |
|
elfzle1 |
⊢ ( 𝑙 ∈ ( 1 ... 1 ) → 1 ≤ 𝑙 ) |
| 185 |
184
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → 1 ≤ 𝑙 ) |
| 186 |
183
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → 𝑙 ∈ ℝ ) |
| 187 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → 0 ∈ ℝ ) |
| 188 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → 1 ∈ ℝ ) |
| 189 |
187 188
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → ( 0 + 1 ) ∈ ℝ ) |
| 190 |
181
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → ( 𝐾 + 1 ) ∈ ℝ ) |
| 191 |
|
elfzle2 |
⊢ ( 𝑙 ∈ ( 1 ... 1 ) → 𝑙 ≤ 1 ) |
| 192 |
191
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → 𝑙 ≤ 1 ) |
| 193 |
140
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → 1 = ( 0 + 1 ) ) |
| 194 |
192 193
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → 𝑙 ≤ ( 0 + 1 ) ) |
| 195 |
147
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → ( 0 + 1 ) ≤ ( 𝐾 + 1 ) ) |
| 196 |
186 189 190 194 195
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → 𝑙 ≤ ( 𝐾 + 1 ) ) |
| 197 |
179 181 183 185 196
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
| 198 |
118
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑐 ‘ 𝑙 ) ∈ ℕ0 ) |
| 199 |
197 198
|
mpdan |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → ( 𝑐 ‘ 𝑙 ) ∈ ℕ0 ) |
| 200 |
178 199
|
fsumnn0cl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → Σ 𝑙 ∈ ( 1 ... 1 ) ( 𝑐 ‘ 𝑙 ) ∈ ℕ0 ) |
| 201 |
200
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → Σ 𝑙 ∈ ( 1 ... 1 ) ( 𝑐 ‘ 𝑙 ) ∈ ℂ ) |
| 202 |
122 201
|
pncan2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( 1 + Σ 𝑙 ∈ ( 1 ... 1 ) ( 𝑐 ‘ 𝑙 ) ) − 1 ) = Σ 𝑙 ∈ ( 1 ... 1 ) ( 𝑐 ‘ 𝑙 ) ) |
| 203 |
137 139 137 172 148
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 1 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
| 204 |
97 203
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ‘ 1 ) ∈ ℕ0 ) |
| 205 |
204
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ‘ 1 ) ∈ ℂ ) |
| 206 |
|
fveq2 |
⊢ ( 𝑙 = 1 → ( 𝑐 ‘ 𝑙 ) = ( 𝑐 ‘ 1 ) ) |
| 207 |
206
|
fsum1 |
⊢ ( ( 1 ∈ ℤ ∧ ( 𝑐 ‘ 1 ) ∈ ℂ ) → Σ 𝑙 ∈ ( 1 ... 1 ) ( 𝑐 ‘ 𝑙 ) = ( 𝑐 ‘ 1 ) ) |
| 208 |
137 205 207
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → Σ 𝑙 ∈ ( 1 ... 1 ) ( 𝑐 ‘ 𝑙 ) = ( 𝑐 ‘ 1 ) ) |
| 209 |
202 208
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( 1 + Σ 𝑙 ∈ ( 1 ... 1 ) ( 𝑐 ‘ 𝑙 ) ) − 1 ) = ( 𝑐 ‘ 1 ) ) |
| 210 |
177 209
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ 1 ) − 1 ) = ( 𝑐 ‘ 1 ) ) |
| 211 |
166 210
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) = ( 𝑐 ‘ 1 ) ) |
| 212 |
211
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) = ( 𝑐 ‘ 1 ) ) |
| 213 |
212
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) = ( 𝑐 ‘ 1 ) ) |
| 214 |
213
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ 𝑘 = 1 ) → ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) = ( 𝑐 ‘ 1 ) ) |
| 215 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ 𝑘 = 1 ) → 𝑘 = 1 ) |
| 216 |
215
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ 𝑘 = 1 ) → ( 𝑐 ‘ 𝑘 ) = ( 𝑐 ‘ 1 ) ) |
| 217 |
216
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ 𝑘 = 1 ) → ( 𝑐 ‘ 1 ) = ( 𝑐 ‘ 𝑘 ) ) |
| 218 |
214 217
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ 𝑘 = 1 ) → ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) = ( 𝑐 ‘ 𝑘 ) ) |
| 219 |
3
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝐹 = ( 𝑎 ∈ 𝐴 ↦ ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ) ) |
| 220 |
|
simpllr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑎 = 𝑐 ) ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑎 = 𝑐 ) |
| 221 |
220
|
fveq1d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑎 = 𝑐 ) ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → ( 𝑎 ‘ 𝑙 ) = ( 𝑐 ‘ 𝑙 ) ) |
| 222 |
221
|
sumeq2dv |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑎 = 𝑐 ) ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) = Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) |
| 223 |
222
|
oveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑎 = 𝑐 ) ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) = ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) |
| 224 |
223
|
mpteq2dva |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑎 = 𝑐 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ) |
| 225 |
|
simpll2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑐 ∈ 𝐴 ) |
| 226 |
|
fzfid |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 1 ... 𝐾 ) ∈ Fin ) |
| 227 |
226
|
mptexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ∈ V ) |
| 228 |
219 224 225 227
|
fvmptd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝐹 ‘ 𝑐 ) = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ) |
| 229 |
228
|
fveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) = ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ 𝑘 ) ) |
| 230 |
228
|
fveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) = ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ ( 𝑘 − 1 ) ) ) |
| 231 |
229 230
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) = ( ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ 𝑘 ) − ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ ( 𝑘 − 1 ) ) ) ) |
| 232 |
231
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) = ( ( ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ 𝑘 ) − ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) |
| 233 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ) |
| 234 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑗 = 𝑘 ) → 𝑗 = 𝑘 ) |
| 235 |
234
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑗 = 𝑘 ) → ( 1 ... 𝑗 ) = ( 1 ... 𝑘 ) ) |
| 236 |
235
|
sumeq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑗 = 𝑘 ) → Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) = Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) ) |
| 237 |
234 236
|
oveq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑗 = 𝑘 ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) = ( 𝑘 + Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) ) ) |
| 238 |
|
1zzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ∈ ℤ ) |
| 239 |
138
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝐾 ∈ ℤ ) |
| 240 |
239
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝐾 ∈ ℤ ) |
| 241 |
240
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝐾 ∈ ℤ ) |
| 242 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) → 𝑘 ∈ ℕ ) |
| 243 |
242
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑘 ∈ ℕ ) |
| 244 |
243
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑘 ∈ ℤ ) |
| 245 |
244
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 ∈ ℤ ) |
| 246 |
245
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ℤ ) |
| 247 |
243
|
nnge1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 1 ≤ 𝑘 ) |
| 248 |
247
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 1 ≤ 𝑘 ) |
| 249 |
248
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ≤ 𝑘 ) |
| 250 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
| 251 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 1 ∈ ℤ ) |
| 252 |
240
|
peano2zd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝐾 + 1 ) ∈ ℤ ) |
| 253 |
|
elfz |
⊢ ( ( 𝑘 ∈ ℤ ∧ 1 ∈ ℤ ∧ ( 𝐾 + 1 ) ∈ ℤ ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↔ ( 1 ≤ 𝑘 ∧ 𝑘 ≤ ( 𝐾 + 1 ) ) ) ) |
| 254 |
245 251 252 253
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↔ ( 1 ≤ 𝑘 ∧ 𝑘 ≤ ( 𝐾 + 1 ) ) ) ) |
| 255 |
254
|
biimpd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) → ( 1 ≤ 𝑘 ∧ 𝑘 ≤ ( 𝐾 + 1 ) ) ) ) |
| 256 |
250 255
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 1 ≤ 𝑘 ∧ 𝑘 ≤ ( 𝐾 + 1 ) ) ) |
| 257 |
256
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 ≤ ( 𝐾 + 1 ) ) |
| 258 |
|
neqne |
⊢ ( ¬ 𝑘 = ( 𝐾 + 1 ) → 𝑘 ≠ ( 𝐾 + 1 ) ) |
| 259 |
258
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 ≠ ( 𝐾 + 1 ) ) |
| 260 |
259
|
necomd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝐾 + 1 ) ≠ 𝑘 ) |
| 261 |
257 260
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝑘 ≤ ( 𝐾 + 1 ) ∧ ( 𝐾 + 1 ) ≠ 𝑘 ) ) |
| 262 |
245
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 ∈ ℝ ) |
| 263 |
252
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝐾 + 1 ) ∈ ℝ ) |
| 264 |
262 263
|
ltlend |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝑘 < ( 𝐾 + 1 ) ↔ ( 𝑘 ≤ ( 𝐾 + 1 ) ∧ ( 𝐾 + 1 ) ≠ 𝑘 ) ) ) |
| 265 |
261 264
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 < ( 𝐾 + 1 ) ) |
| 266 |
|
zleltp1 |
⊢ ( ( 𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 𝑘 ≤ 𝐾 ↔ 𝑘 < ( 𝐾 + 1 ) ) ) |
| 267 |
245 240 266
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝑘 ≤ 𝐾 ↔ 𝑘 < ( 𝐾 + 1 ) ) ) |
| 268 |
265 267
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 ≤ 𝐾 ) |
| 269 |
268
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ≤ 𝐾 ) |
| 270 |
238 241 246 249 269
|
elfzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ( 1 ... 𝐾 ) ) |
| 271 |
|
ovexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 + Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) ) ∈ V ) |
| 272 |
233 237 270 271
|
fvmptd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ 𝑘 ) = ( 𝑘 + Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) ) ) |
| 273 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑗 = ( 𝑘 − 1 ) ) → 𝑗 = ( 𝑘 − 1 ) ) |
| 274 |
273
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑗 = ( 𝑘 − 1 ) ) → ( 1 ... 𝑗 ) = ( 1 ... ( 𝑘 − 1 ) ) ) |
| 275 |
274
|
sumeq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑗 = ( 𝑘 − 1 ) ) → Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) = Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) |
| 276 |
273 275
|
oveq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑗 = ( 𝑘 − 1 ) ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) = ( ( 𝑘 − 1 ) + Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) |
| 277 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ∈ ℤ ) |
| 278 |
53
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = 1 ) → 𝐾 ∈ ℤ ) |
| 279 |
278
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝐾 ∈ ℤ ) |
| 280 |
242
|
nnzd |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) → 𝑘 ∈ ℤ ) |
| 281 |
280
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑘 ∈ ℤ ) |
| 282 |
281
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ℤ ) |
| 283 |
282
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ℤ ) |
| 284 |
283 277
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ∈ ℤ ) |
| 285 |
|
neqne |
⊢ ( ¬ 𝑘 = 1 → 𝑘 ≠ 1 ) |
| 286 |
285
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ≠ 1 ) |
| 287 |
108
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ∈ ℝ ) |
| 288 |
283
|
zred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ℝ ) |
| 289 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
| 290 |
|
elfzle1 |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) → 1 ≤ 𝑘 ) |
| 291 |
289 290
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ≤ 𝑘 ) |
| 292 |
287 288 291
|
leltned |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 1 < 𝑘 ↔ 𝑘 ≠ 1 ) ) |
| 293 |
286 292
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 < 𝑘 ) |
| 294 |
277 283
|
zltp1led |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 1 < 𝑘 ↔ ( 1 + 1 ) ≤ 𝑘 ) ) |
| 295 |
293 294
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 1 + 1 ) ≤ 𝑘 ) |
| 296 |
|
leaddsub |
⊢ ( ( 1 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( ( 1 + 1 ) ≤ 𝑘 ↔ 1 ≤ ( 𝑘 − 1 ) ) ) |
| 297 |
287 287 288 296
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 1 + 1 ) ≤ 𝑘 ↔ 1 ≤ ( 𝑘 − 1 ) ) ) |
| 298 |
295 297
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ≤ ( 𝑘 − 1 ) ) |
| 299 |
284
|
zred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ∈ ℝ ) |
| 300 |
55
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝐾 ∈ ℝ ) |
| 301 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ∈ ℝ ) |
| 302 |
300 301
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝐾 + 1 ) ∈ ℝ ) |
| 303 |
302 301
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝐾 + 1 ) − 1 ) ∈ ℝ ) |
| 304 |
|
elfzle2 |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) → 𝑘 ≤ ( 𝐾 + 1 ) ) |
| 305 |
304
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ≤ ( 𝐾 + 1 ) ) |
| 306 |
288 302 301 305
|
lesub1dd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ≤ ( ( 𝐾 + 1 ) − 1 ) ) |
| 307 |
64
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝐾 ∈ ℂ ) |
| 308 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ∈ ℂ ) |
| 309 |
307 308
|
pncand |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝐾 + 1 ) − 1 ) = 𝐾 ) |
| 310 |
56
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝐾 ≤ 𝐾 ) |
| 311 |
309 310
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝐾 + 1 ) − 1 ) ≤ 𝐾 ) |
| 312 |
299 303 300 306 311
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ≤ 𝐾 ) |
| 313 |
277 279 284 298 312
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ∈ ( 1 ... 𝐾 ) ) |
| 314 |
313
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ∈ ( 1 ... 𝐾 ) ) |
| 315 |
314
|
3adantl2 |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ∈ ( 1 ... 𝐾 ) ) |
| 316 |
315
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ∈ ( 1 ... 𝐾 ) ) |
| 317 |
|
ovexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝑘 − 1 ) + Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ∈ V ) |
| 318 |
233 276 316 317
|
fvmptd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ ( 𝑘 − 1 ) ) = ( ( 𝑘 − 1 ) + Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) |
| 319 |
272 318
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ 𝑘 ) − ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ ( 𝑘 − 1 ) ) ) = ( ( 𝑘 + Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) ) − ( ( 𝑘 − 1 ) + Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) ) |
| 320 |
319
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ 𝑘 ) − ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) = ( ( ( 𝑘 + Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) ) − ( ( 𝑘 − 1 ) + Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) − 1 ) ) |
| 321 |
246
|
zcnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ℂ ) |
| 322 |
|
fzfid |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 1 ... 𝑘 ) ∈ Fin ) |
| 323 |
|
1zzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → 1 ∈ ℤ ) |
| 324 |
241
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → 𝐾 ∈ ℤ ) |
| 325 |
324
|
peano2zd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → ( 𝐾 + 1 ) ∈ ℤ ) |
| 326 |
|
elfznn |
⊢ ( 𝑙 ∈ ( 1 ... 𝑘 ) → 𝑙 ∈ ℕ ) |
| 327 |
326
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → 𝑙 ∈ ℕ ) |
| 328 |
327
|
nnzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → 𝑙 ∈ ℤ ) |
| 329 |
327
|
nnge1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → 1 ≤ 𝑙 ) |
| 330 |
327
|
nnred |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → 𝑙 ∈ ℝ ) |
| 331 |
262
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → 𝑘 ∈ ℝ ) |
| 332 |
263
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → ( 𝐾 + 1 ) ∈ ℝ ) |
| 333 |
|
elfzle2 |
⊢ ( 𝑙 ∈ ( 1 ... 𝑘 ) → 𝑙 ≤ 𝑘 ) |
| 334 |
333
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → 𝑙 ≤ 𝑘 ) |
| 335 |
257
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → 𝑘 ≤ ( 𝐾 + 1 ) ) |
| 336 |
330 331 332 334 335
|
letrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → 𝑙 ≤ ( 𝐾 + 1 ) ) |
| 337 |
323 325 328 329 336
|
elfzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
| 338 |
97
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑐 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) |
| 339 |
338
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑐 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) |
| 340 |
339
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑐 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) |
| 341 |
340
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → 𝑐 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) |
| 342 |
341
|
ffvelcdmda |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑐 ‘ 𝑙 ) ∈ ℕ0 ) |
| 343 |
337 342
|
mpdan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → ( 𝑐 ‘ 𝑙 ) ∈ ℕ0 ) |
| 344 |
322 343
|
fsumnn0cl |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) ∈ ℕ0 ) |
| 345 |
344
|
nn0cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) ∈ ℂ ) |
| 346 |
|
1cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ∈ ℂ ) |
| 347 |
321 346
|
subcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ∈ ℂ ) |
| 348 |
|
fzfid |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 1 ... ( 𝑘 − 1 ) ) ∈ Fin ) |
| 349 |
|
1zzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → 1 ∈ ℤ ) |
| 350 |
241
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → 𝐾 ∈ ℤ ) |
| 351 |
350
|
peano2zd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → ( 𝐾 + 1 ) ∈ ℤ ) |
| 352 |
|
elfznn |
⊢ ( 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) → 𝑙 ∈ ℕ ) |
| 353 |
352
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → 𝑙 ∈ ℕ ) |
| 354 |
353
|
nnzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → 𝑙 ∈ ℤ ) |
| 355 |
353
|
nnge1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → 1 ≤ 𝑙 ) |
| 356 |
353
|
nnred |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → 𝑙 ∈ ℝ ) |
| 357 |
262
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → 𝑘 ∈ ℝ ) |
| 358 |
|
1red |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → 1 ∈ ℝ ) |
| 359 |
357 358
|
resubcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → ( 𝑘 − 1 ) ∈ ℝ ) |
| 360 |
263
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → ( 𝐾 + 1 ) ∈ ℝ ) |
| 361 |
|
elfzle2 |
⊢ ( 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) → 𝑙 ≤ ( 𝑘 − 1 ) ) |
| 362 |
361
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → 𝑙 ≤ ( 𝑘 − 1 ) ) |
| 363 |
357
|
lem1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → ( 𝑘 − 1 ) ≤ 𝑘 ) |
| 364 |
257
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → 𝑘 ≤ ( 𝐾 + 1 ) ) |
| 365 |
359 357 360 363 364
|
letrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → ( 𝑘 − 1 ) ≤ ( 𝐾 + 1 ) ) |
| 366 |
356 359 360 362 365
|
letrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → 𝑙 ≤ ( 𝐾 + 1 ) ) |
| 367 |
349 351 354 355 366
|
elfzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
| 368 |
340
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → 𝑐 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) |
| 369 |
368
|
ffvelcdmda |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑐 ‘ 𝑙 ) ∈ ℕ0 ) |
| 370 |
367 369
|
mpdan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → ( 𝑐 ‘ 𝑙 ) ∈ ℕ0 ) |
| 371 |
348 370
|
fsumnn0cl |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ∈ ℕ0 ) |
| 372 |
371
|
nn0cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ∈ ℂ ) |
| 373 |
321 345 347 372
|
addsub4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝑘 + Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) ) − ( ( 𝑘 − 1 ) + Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) = ( ( 𝑘 − ( 𝑘 − 1 ) ) + ( Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) − Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) ) |
| 374 |
373
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( 𝑘 + Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) ) − ( ( 𝑘 − 1 ) + Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) − 1 ) = ( ( ( 𝑘 − ( 𝑘 − 1 ) ) + ( Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) − Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) − 1 ) ) |
| 375 |
321 346
|
nncand |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − ( 𝑘 − 1 ) ) = 1 ) |
| 376 |
375
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝑘 − ( 𝑘 − 1 ) ) + ( Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) − Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) = ( 1 + ( Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) − Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) ) |
| 377 |
376
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( 𝑘 − ( 𝑘 − 1 ) ) + ( Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) − Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) − 1 ) = ( ( 1 + ( Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) − Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) − 1 ) ) |
| 378 |
345 372
|
subcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) − Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ∈ ℂ ) |
| 379 |
346 378
|
pncan2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 1 + ( Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) − Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) − 1 ) = ( Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) − Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) |
| 380 |
137
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 1 ∈ ℤ ) |
| 381 |
380 244 247
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 1 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ) ) |
| 382 |
|
eluz2 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) ↔ ( 1 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ) ) |
| 383 |
381 382
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
| 384 |
383
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
| 385 |
384
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
| 386 |
343
|
nn0cnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → ( 𝑐 ‘ 𝑙 ) ∈ ℂ ) |
| 387 |
|
fveq2 |
⊢ ( 𝑙 = 𝑘 → ( 𝑐 ‘ 𝑙 ) = ( 𝑐 ‘ 𝑘 ) ) |
| 388 |
385 386 387
|
fsumm1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) = ( Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) + ( 𝑐 ‘ 𝑘 ) ) ) |
| 389 |
388
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) + ( 𝑐 ‘ 𝑘 ) ) = Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) ) |
| 390 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
| 391 |
338 390
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑐 ‘ 𝑘 ) ∈ ℕ0 ) |
| 392 |
391
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑐 ‘ 𝑘 ) ∈ ℂ ) |
| 393 |
392
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝑐 ‘ 𝑘 ) ∈ ℂ ) |
| 394 |
393
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑐 ‘ 𝑘 ) ∈ ℂ ) |
| 395 |
345 372 394
|
subaddd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) − Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) = ( 𝑐 ‘ 𝑘 ) ↔ ( Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) + ( 𝑐 ‘ 𝑘 ) ) = Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) ) ) |
| 396 |
389 395
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) − Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) = ( 𝑐 ‘ 𝑘 ) ) |
| 397 |
379 396
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 1 + ( Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) − Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) − 1 ) = ( 𝑐 ‘ 𝑘 ) ) |
| 398 |
377 397
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( 𝑘 − ( 𝑘 − 1 ) ) + ( Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) − Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) − 1 ) = ( 𝑐 ‘ 𝑘 ) ) |
| 399 |
374 398
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( 𝑘 + Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) ) − ( ( 𝑘 − 1 ) + Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) − 1 ) = ( 𝑐 ‘ 𝑘 ) ) |
| 400 |
320 399
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ 𝑘 ) − ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) = ( 𝑐 ‘ 𝑘 ) ) |
| 401 |
232 400
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) = ( 𝑐 ‘ 𝑘 ) ) |
| 402 |
218 401
|
ifeqda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → if ( 𝑘 = 1 , ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) , ( ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = ( 𝑐 ‘ 𝑘 ) ) |
| 403 |
164 402
|
ifeqda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) , ( ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = ( 𝑐 ‘ 𝑘 ) ) |
| 404 |
403
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) , ( ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = ( 𝑐 ‘ 𝑘 ) ) |
| 405 |
404
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) , ( ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ ( 𝑐 ‘ 𝑘 ) ) ) |
| 406 |
97
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝑐 Fn ( 1 ... ( 𝐾 + 1 ) ) ) |
| 407 |
|
dffn5 |
⊢ ( 𝑐 Fn ( 1 ... ( 𝐾 + 1 ) ) ↔ 𝑐 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ ( 𝑐 ‘ 𝑘 ) ) ) |
| 408 |
407
|
biimpi |
⊢ ( 𝑐 Fn ( 1 ... ( 𝐾 + 1 ) ) → 𝑐 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ ( 𝑐 ‘ 𝑘 ) ) ) |
| 409 |
406 408
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝑐 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ ( 𝑐 ‘ 𝑘 ) ) ) |
| 410 |
409
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ ( 𝑐 ‘ 𝑘 ) ) = 𝑐 ) |
| 411 |
405 410
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) , ( ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) = 𝑐 ) |
| 412 |
37 411
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑐 ) ) = 𝑐 ) |
| 413 |
412
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑐 ∈ 𝐴 ( 𝐺 ‘ ( 𝐹 ‘ 𝑐 ) ) = 𝑐 ) |
| 414 |
1 2 3 4 5 6
|
sticksstones12a |
⊢ ( 𝜑 → ∀ 𝑑 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑑 ) ) = 𝑑 ) |
| 415 |
8 9 413 414
|
2fvidf1od |
⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |