Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones12.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
2 |
|
sticksstones12.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
3 |
|
sticksstones12.3 |
⊢ 𝐹 = ( 𝑎 ∈ 𝐴 ↦ ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ) |
4 |
|
sticksstones12.4 |
⊢ 𝐺 = ( 𝑏 ∈ 𝐵 ↦ if ( 𝐾 = 0 , { 〈 1 , 𝑁 〉 } , ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) ) |
5 |
|
sticksstones12.5 |
⊢ 𝐴 = { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } |
6 |
|
sticksstones12.6 |
⊢ 𝐵 = { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) } |
7 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
8 |
1 7 3 5 6
|
sticksstones8 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
9 |
1 2 4 5 6
|
sticksstones10 |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
10 |
4
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( 𝑏 ∈ 𝐵 ↦ if ( 𝐾 = 0 , { 〈 1 , 𝑁 〉 } , ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) ) ) |
11 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
12 |
2
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝐾 ) |
13 |
11 12
|
ltned |
⊢ ( 𝜑 → 0 ≠ 𝐾 ) |
14 |
13
|
necomd |
⊢ ( 𝜑 → 𝐾 ≠ 0 ) |
15 |
14
|
neneqd |
⊢ ( 𝜑 → ¬ 𝐾 = 0 ) |
16 |
15
|
iffalsed |
⊢ ( 𝜑 → if ( 𝐾 = 0 , { 〈 1 , 𝑁 〉 } , ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → if ( 𝐾 = 0 , { 〈 1 , 𝑁 〉 } , ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) |
18 |
17
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐵 ↦ if ( 𝐾 = 0 , { 〈 1 , 𝑁 〉 } , ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) ) = ( 𝑏 ∈ 𝐵 ↦ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) ) |
19 |
10 18
|
eqtrd |
⊢ ( 𝜑 → 𝐺 = ( 𝑏 ∈ 𝐵 ↦ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝐺 = ( 𝑏 ∈ 𝐵 ↦ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) ) |
21 |
|
fveq1 |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑐 ) → ( 𝑏 ‘ 𝐾 ) = ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) |
22 |
21
|
oveq2d |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑐 ) → ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) = ( ( 𝑁 + 𝐾 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) ) |
23 |
|
fveq1 |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑐 ) → ( 𝑏 ‘ 1 ) = ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) ) |
24 |
23
|
oveq1d |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑐 ) → ( ( 𝑏 ‘ 1 ) − 1 ) = ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) ) |
25 |
|
fveq1 |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑐 ) → ( 𝑏 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) ) |
26 |
|
fveq1 |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑐 ) → ( 𝑏 ‘ ( 𝑘 − 1 ) ) = ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) |
27 |
25 26
|
oveq12d |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑐 ) → ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) = ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) ) |
28 |
27
|
oveq1d |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑐 ) → ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) = ( ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) |
29 |
24 28
|
ifeq12d |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑐 ) → if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = if ( 𝑘 = 1 , ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) , ( ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) |
30 |
22 29
|
ifeq12d |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑐 ) → if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) , ( ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) |
31 |
30
|
adantr |
⊢ ( ( 𝑏 = ( 𝐹 ‘ 𝑐 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) , ( ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) |
32 |
31
|
mpteq2dva |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑐 ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) , ( ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) |
33 |
32
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑏 = ( 𝐹 ‘ 𝑐 ) ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) , ( ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) |
34 |
8
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑐 ) ∈ 𝐵 ) |
35 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 1 ... ( 𝐾 + 1 ) ) ∈ Fin ) |
36 |
35
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) , ( ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ∈ V ) |
37 |
20 33 34 36
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑐 ) ) = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) , ( ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) |
38 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝐹 = ( 𝑎 ∈ 𝐴 ↦ ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ) ) |
39 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑎 = 𝑐 ) ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑎 = 𝑐 ) |
40 |
39
|
fveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑎 = 𝑐 ) ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → ( 𝑎 ‘ 𝑙 ) = ( 𝑐 ‘ 𝑙 ) ) |
41 |
40
|
sumeq2dv |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑎 = 𝑐 ) ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) = Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) |
42 |
41
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑎 = 𝑐 ) ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) = ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) |
43 |
42
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑎 = 𝑐 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ) |
44 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝑐 ∈ 𝐴 ) |
45 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 1 ... 𝐾 ) ∈ Fin ) |
46 |
45
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ∈ V ) |
47 |
38 43 44 46
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑐 ) = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ) |
48 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑗 = 𝐾 ) → 𝑗 = 𝐾 ) |
49 |
48
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑗 = 𝐾 ) → ( 1 ... 𝑗 ) = ( 1 ... 𝐾 ) ) |
50 |
49
|
sumeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑗 = 𝐾 ) → Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) = Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) ) |
51 |
48 50
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑗 = 𝐾 ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) = ( 𝐾 + Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) ) ) |
52 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
53 |
7
|
nn0zd |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
54 |
2
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝐾 ) |
55 |
2
|
nnred |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
56 |
55
|
leidd |
⊢ ( 𝜑 → 𝐾 ≤ 𝐾 ) |
57 |
52 53 53 54 56
|
elfzd |
⊢ ( 𝜑 → 𝐾 ∈ ( 1 ... 𝐾 ) ) |
58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝐾 ∈ ( 1 ... 𝐾 ) ) |
59 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝐾 + Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) ) ∈ V ) |
60 |
47 51 58 59
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) = ( 𝐾 + Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) ) ) |
61 |
60
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( 𝑁 + 𝐾 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) = ( ( 𝑁 + 𝐾 ) − ( 𝐾 + Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) ) ) ) |
62 |
1
|
nn0cnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
63 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝑁 ∈ ℂ ) |
64 |
55
|
recnd |
⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
65 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝐾 ∈ ℂ ) |
66 |
63 65
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑁 + 𝐾 ) = ( 𝐾 + 𝑁 ) ) |
67 |
66
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( 𝑁 + 𝐾 ) − ( 𝐾 + Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) ) ) = ( ( 𝐾 + 𝑁 ) − ( 𝐾 + Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) ) ) ) |
68 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 𝐾 ) ) → 1 ∈ ℤ ) |
69 |
53
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 𝐾 ) ) → 𝐾 ∈ ℤ ) |
70 |
69
|
peano2zd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 𝐾 ) ) → ( 𝐾 + 1 ) ∈ ℤ ) |
71 |
|
elfzelz |
⊢ ( 𝑙 ∈ ( 1 ... 𝐾 ) → 𝑙 ∈ ℤ ) |
72 |
71
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 𝐾 ) ) → 𝑙 ∈ ℤ ) |
73 |
|
elfzle1 |
⊢ ( 𝑙 ∈ ( 1 ... 𝐾 ) → 1 ≤ 𝑙 ) |
74 |
73
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 𝐾 ) ) → 1 ≤ 𝑙 ) |
75 |
72
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 𝐾 ) ) → 𝑙 ∈ ℝ ) |
76 |
55
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 𝐾 ) ) → 𝐾 ∈ ℝ ) |
77 |
70
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 𝐾 ) ) → ( 𝐾 + 1 ) ∈ ℝ ) |
78 |
|
elfzle2 |
⊢ ( 𝑙 ∈ ( 1 ... 𝐾 ) → 𝑙 ≤ 𝐾 ) |
79 |
78
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 𝐾 ) ) → 𝑙 ≤ 𝐾 ) |
80 |
76
|
lep1d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 𝐾 ) ) → 𝐾 ≤ ( 𝐾 + 1 ) ) |
81 |
75 76 77 79 80
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 𝐾 ) ) → 𝑙 ≤ ( 𝐾 + 1 ) ) |
82 |
68 70 72 74 81
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 𝐾 ) ) → 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
83 |
5
|
eleq2i |
⊢ ( 𝑐 ∈ 𝐴 ↔ 𝑐 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ) |
84 |
83
|
biimpi |
⊢ ( 𝑐 ∈ 𝐴 → 𝑐 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ) |
85 |
84
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝑐 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ) |
86 |
|
vex |
⊢ 𝑐 ∈ V |
87 |
|
feq1 |
⊢ ( 𝑔 = 𝑐 → ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ↔ 𝑐 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) ) |
88 |
|
simpl |
⊢ ( ( 𝑔 = 𝑐 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑔 = 𝑐 ) |
89 |
88
|
fveq1d |
⊢ ( ( 𝑔 = 𝑐 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑔 ‘ 𝑖 ) = ( 𝑐 ‘ 𝑖 ) ) |
90 |
89
|
sumeq2dv |
⊢ ( 𝑔 = 𝑐 → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑐 ‘ 𝑖 ) ) |
91 |
90
|
eqeq1d |
⊢ ( 𝑔 = 𝑐 → ( Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ↔ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑐 ‘ 𝑖 ) = 𝑁 ) ) |
92 |
87 91
|
anbi12d |
⊢ ( 𝑔 = 𝑐 → ( ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) ↔ ( 𝑐 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑐 ‘ 𝑖 ) = 𝑁 ) ) ) |
93 |
86 92
|
elab |
⊢ ( 𝑐 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ↔ ( 𝑐 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑐 ‘ 𝑖 ) = 𝑁 ) ) |
94 |
93
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ↔ ( 𝑐 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑐 ‘ 𝑖 ) = 𝑁 ) ) ) |
95 |
94
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } → ( 𝑐 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑐 ‘ 𝑖 ) = 𝑁 ) ) ) |
96 |
85 95
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑐 ‘ 𝑖 ) = 𝑁 ) ) |
97 |
96
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝑐 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) |
98 |
97
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 𝐾 ) ) → 𝑐 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) |
99 |
98
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑐 ‘ 𝑙 ) ∈ ℕ0 ) |
100 |
82 99
|
mpdan |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 𝐾 ) ) → ( 𝑐 ‘ 𝑙 ) ∈ ℕ0 ) |
101 |
45 100
|
fsumnn0cl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) ∈ ℕ0 ) |
102 |
101
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) ∈ ℂ ) |
103 |
65 63 102
|
pnpcand |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( 𝐾 + 𝑁 ) − ( 𝐾 + Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) ) ) = ( 𝑁 − Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) ) ) |
104 |
|
eqid |
⊢ 1 = 1 |
105 |
|
1p0e1 |
⊢ ( 1 + 0 ) = 1 |
106 |
104 105
|
eqtr4i |
⊢ 1 = ( 1 + 0 ) |
107 |
106
|
a1i |
⊢ ( 𝜑 → 1 = ( 1 + 0 ) ) |
108 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
109 |
|
0le1 |
⊢ 0 ≤ 1 |
110 |
109
|
a1i |
⊢ ( 𝜑 → 0 ≤ 1 ) |
111 |
108 11 55 108 54 110
|
le2addd |
⊢ ( 𝜑 → ( 1 + 0 ) ≤ ( 𝐾 + 1 ) ) |
112 |
107 111
|
eqbrtrd |
⊢ ( 𝜑 → 1 ≤ ( 𝐾 + 1 ) ) |
113 |
53
|
peano2zd |
⊢ ( 𝜑 → ( 𝐾 + 1 ) ∈ ℤ ) |
114 |
|
eluz |
⊢ ( ( 1 ∈ ℤ ∧ ( 𝐾 + 1 ) ∈ ℤ ) → ( ( 𝐾 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ↔ 1 ≤ ( 𝐾 + 1 ) ) ) |
115 |
52 113 114
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐾 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ↔ 1 ≤ ( 𝐾 + 1 ) ) ) |
116 |
112 115
|
mpbird |
⊢ ( 𝜑 → ( 𝐾 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
117 |
116
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝐾 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
118 |
97
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑐 ‘ 𝑙 ) ∈ ℕ0 ) |
119 |
118
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑐 ‘ 𝑙 ) ∈ ℂ ) |
120 |
|
fveq2 |
⊢ ( 𝑙 = ( 𝐾 + 1 ) → ( 𝑐 ‘ 𝑙 ) = ( 𝑐 ‘ ( 𝐾 + 1 ) ) ) |
121 |
117 119 120
|
fsumm1 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → Σ 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑐 ‘ 𝑙 ) = ( Σ 𝑙 ∈ ( 1 ... ( ( 𝐾 + 1 ) − 1 ) ) ( 𝑐 ‘ 𝑙 ) + ( 𝑐 ‘ ( 𝐾 + 1 ) ) ) ) |
122 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 1 ∈ ℂ ) |
123 |
65 122
|
pncand |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( 𝐾 + 1 ) − 1 ) = 𝐾 ) |
124 |
123
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 1 ... ( ( 𝐾 + 1 ) − 1 ) ) = ( 1 ... 𝐾 ) ) |
125 |
124
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → Σ 𝑙 ∈ ( 1 ... ( ( 𝐾 + 1 ) − 1 ) ) ( 𝑐 ‘ 𝑙 ) = Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) ) |
126 |
125
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( Σ 𝑙 ∈ ( 1 ... ( ( 𝐾 + 1 ) − 1 ) ) ( 𝑐 ‘ 𝑙 ) + ( 𝑐 ‘ ( 𝐾 + 1 ) ) ) = ( Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) + ( 𝑐 ‘ ( 𝐾 + 1 ) ) ) ) |
127 |
121 126
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → Σ 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑐 ‘ 𝑙 ) = ( Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) + ( 𝑐 ‘ ( 𝐾 + 1 ) ) ) ) |
128 |
127
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) + ( 𝑐 ‘ ( 𝐾 + 1 ) ) ) = Σ 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑐 ‘ 𝑙 ) ) |
129 |
|
fveq2 |
⊢ ( 𝑙 = 𝑖 → ( 𝑐 ‘ 𝑙 ) = ( 𝑐 ‘ 𝑖 ) ) |
130 |
|
nfcv |
⊢ Ⅎ 𝑖 ( 1 ... ( 𝐾 + 1 ) ) |
131 |
|
nfcv |
⊢ Ⅎ 𝑙 ( 1 ... ( 𝐾 + 1 ) ) |
132 |
|
nfcv |
⊢ Ⅎ 𝑖 ( 𝑐 ‘ 𝑙 ) |
133 |
|
nfcv |
⊢ Ⅎ 𝑙 ( 𝑐 ‘ 𝑖 ) |
134 |
129 130 131 132 133
|
cbvsum |
⊢ Σ 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑐 ‘ 𝑙 ) = Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑐 ‘ 𝑖 ) |
135 |
134
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → Σ 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑐 ‘ 𝑙 ) = Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑐 ‘ 𝑖 ) ) |
136 |
96
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑐 ‘ 𝑖 ) = 𝑁 ) |
137 |
135 136
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → Σ 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑐 ‘ 𝑙 ) = 𝑁 ) |
138 |
128 137
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) + ( 𝑐 ‘ ( 𝐾 + 1 ) ) ) = 𝑁 ) |
139 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 1 ∈ ℤ ) |
140 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝐾 ∈ ℤ ) |
141 |
140
|
peano2zd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝐾 + 1 ) ∈ ℤ ) |
142 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
143 |
142
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 1 = ( 0 + 1 ) ) |
144 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 0 ∈ ℝ ) |
145 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝐾 ∈ ℝ ) |
146 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 1 ∈ ℝ ) |
147 |
11 55 12
|
ltled |
⊢ ( 𝜑 → 0 ≤ 𝐾 ) |
148 |
147
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 0 ≤ 𝐾 ) |
149 |
144 145 146 148
|
leadd1dd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 0 + 1 ) ≤ ( 𝐾 + 1 ) ) |
150 |
143 149
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 1 ≤ ( 𝐾 + 1 ) ) |
151 |
55 55 108 56
|
leadd1dd |
⊢ ( 𝜑 → ( 𝐾 + 1 ) ≤ ( 𝐾 + 1 ) ) |
152 |
151
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝐾 + 1 ) ≤ ( 𝐾 + 1 ) ) |
153 |
139 141 141 150 152
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝐾 + 1 ) ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
154 |
97 153
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ‘ ( 𝐾 + 1 ) ) ∈ ℕ0 ) |
155 |
154
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ‘ ( 𝐾 + 1 ) ) ∈ ℂ ) |
156 |
63 102 155
|
subaddd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( 𝑁 − Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) ) = ( 𝑐 ‘ ( 𝐾 + 1 ) ) ↔ ( Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) + ( 𝑐 ‘ ( 𝐾 + 1 ) ) ) = 𝑁 ) ) |
157 |
138 156
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑁 − Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) ) = ( 𝑐 ‘ ( 𝐾 + 1 ) ) ) |
158 |
103 157
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( 𝐾 + 𝑁 ) − ( 𝐾 + Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) ) ) = ( 𝑐 ‘ ( 𝐾 + 1 ) ) ) |
159 |
67 158
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( 𝑁 + 𝐾 ) − ( 𝐾 + Σ 𝑙 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑙 ) ) ) = ( 𝑐 ‘ ( 𝐾 + 1 ) ) ) |
160 |
61 159
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( 𝑁 + 𝐾 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) = ( 𝑐 ‘ ( 𝐾 + 1 ) ) ) |
161 |
160
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( ( 𝑁 + 𝐾 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) = ( 𝑐 ‘ ( 𝐾 + 1 ) ) ) |
162 |
161
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = ( 𝐾 + 1 ) ) → ( ( 𝑁 + 𝐾 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) = ( 𝑐 ‘ ( 𝐾 + 1 ) ) ) |
163 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 = ( 𝐾 + 1 ) ) |
164 |
163
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝑐 ‘ 𝑘 ) = ( 𝑐 ‘ ( 𝐾 + 1 ) ) ) |
165 |
164
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝑐 ‘ ( 𝐾 + 1 ) ) = ( 𝑐 ‘ 𝑘 ) ) |
166 |
162 165
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = ( 𝐾 + 1 ) ) → ( ( 𝑁 + 𝐾 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) = ( 𝑐 ‘ 𝑘 ) ) |
167 |
47
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) = ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ 1 ) ) |
168 |
167
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) = ( ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ 1 ) − 1 ) ) |
169 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ) |
170 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑗 = 1 ) → 𝑗 = 1 ) |
171 |
170
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑗 = 1 ) → ( 1 ... 𝑗 ) = ( 1 ... 1 ) ) |
172 |
171
|
sumeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑗 = 1 ) → Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) = Σ 𝑙 ∈ ( 1 ... 1 ) ( 𝑐 ‘ 𝑙 ) ) |
173 |
170 172
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑗 = 1 ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) = ( 1 + Σ 𝑙 ∈ ( 1 ... 1 ) ( 𝑐 ‘ 𝑙 ) ) ) |
174 |
146
|
leidd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 1 ≤ 1 ) |
175 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 1 ≤ 𝐾 ) |
176 |
139 140 139 174 175
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 1 ∈ ( 1 ... 𝐾 ) ) |
177 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 1 + Σ 𝑙 ∈ ( 1 ... 1 ) ( 𝑐 ‘ 𝑙 ) ) ∈ V ) |
178 |
169 173 176 177
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ 1 ) = ( 1 + Σ 𝑙 ∈ ( 1 ... 1 ) ( 𝑐 ‘ 𝑙 ) ) ) |
179 |
178
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ 1 ) − 1 ) = ( ( 1 + Σ 𝑙 ∈ ( 1 ... 1 ) ( 𝑐 ‘ 𝑙 ) ) − 1 ) ) |
180 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 1 ... 1 ) ∈ Fin ) |
181 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → 1 ∈ ℤ ) |
182 |
140
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → 𝐾 ∈ ℤ ) |
183 |
182
|
peano2zd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → ( 𝐾 + 1 ) ∈ ℤ ) |
184 |
|
elfzelz |
⊢ ( 𝑙 ∈ ( 1 ... 1 ) → 𝑙 ∈ ℤ ) |
185 |
184
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → 𝑙 ∈ ℤ ) |
186 |
|
elfzle1 |
⊢ ( 𝑙 ∈ ( 1 ... 1 ) → 1 ≤ 𝑙 ) |
187 |
186
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → 1 ≤ 𝑙 ) |
188 |
185
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → 𝑙 ∈ ℝ ) |
189 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → 0 ∈ ℝ ) |
190 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → 1 ∈ ℝ ) |
191 |
189 190
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → ( 0 + 1 ) ∈ ℝ ) |
192 |
183
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → ( 𝐾 + 1 ) ∈ ℝ ) |
193 |
|
elfzle2 |
⊢ ( 𝑙 ∈ ( 1 ... 1 ) → 𝑙 ≤ 1 ) |
194 |
193
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → 𝑙 ≤ 1 ) |
195 |
142
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → 1 = ( 0 + 1 ) ) |
196 |
194 195
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → 𝑙 ≤ ( 0 + 1 ) ) |
197 |
149
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → ( 0 + 1 ) ≤ ( 𝐾 + 1 ) ) |
198 |
188 191 192 196 197
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → 𝑙 ≤ ( 𝐾 + 1 ) ) |
199 |
181 183 185 187 198
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
200 |
118
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑐 ‘ 𝑙 ) ∈ ℕ0 ) |
201 |
199 200
|
mpdan |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑙 ∈ ( 1 ... 1 ) ) → ( 𝑐 ‘ 𝑙 ) ∈ ℕ0 ) |
202 |
180 201
|
fsumnn0cl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → Σ 𝑙 ∈ ( 1 ... 1 ) ( 𝑐 ‘ 𝑙 ) ∈ ℕ0 ) |
203 |
202
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → Σ 𝑙 ∈ ( 1 ... 1 ) ( 𝑐 ‘ 𝑙 ) ∈ ℂ ) |
204 |
122 203
|
pncan2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( 1 + Σ 𝑙 ∈ ( 1 ... 1 ) ( 𝑐 ‘ 𝑙 ) ) − 1 ) = Σ 𝑙 ∈ ( 1 ... 1 ) ( 𝑐 ‘ 𝑙 ) ) |
205 |
139 141 139 174 150
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 1 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
206 |
97 205
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ‘ 1 ) ∈ ℕ0 ) |
207 |
206
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ‘ 1 ) ∈ ℂ ) |
208 |
|
fveq2 |
⊢ ( 𝑙 = 1 → ( 𝑐 ‘ 𝑙 ) = ( 𝑐 ‘ 1 ) ) |
209 |
208
|
fsum1 |
⊢ ( ( 1 ∈ ℤ ∧ ( 𝑐 ‘ 1 ) ∈ ℂ ) → Σ 𝑙 ∈ ( 1 ... 1 ) ( 𝑐 ‘ 𝑙 ) = ( 𝑐 ‘ 1 ) ) |
210 |
139 207 209
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → Σ 𝑙 ∈ ( 1 ... 1 ) ( 𝑐 ‘ 𝑙 ) = ( 𝑐 ‘ 1 ) ) |
211 |
204 210
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( 1 + Σ 𝑙 ∈ ( 1 ... 1 ) ( 𝑐 ‘ 𝑙 ) ) − 1 ) = ( 𝑐 ‘ 1 ) ) |
212 |
179 211
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ 1 ) − 1 ) = ( 𝑐 ‘ 1 ) ) |
213 |
168 212
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) = ( 𝑐 ‘ 1 ) ) |
214 |
213
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) = ( 𝑐 ‘ 1 ) ) |
215 |
214
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) = ( 𝑐 ‘ 1 ) ) |
216 |
215
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ 𝑘 = 1 ) → ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) = ( 𝑐 ‘ 1 ) ) |
217 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ 𝑘 = 1 ) → 𝑘 = 1 ) |
218 |
217
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ 𝑘 = 1 ) → ( 𝑐 ‘ 𝑘 ) = ( 𝑐 ‘ 1 ) ) |
219 |
218
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ 𝑘 = 1 ) → ( 𝑐 ‘ 1 ) = ( 𝑐 ‘ 𝑘 ) ) |
220 |
216 219
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ 𝑘 = 1 ) → ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) = ( 𝑐 ‘ 𝑘 ) ) |
221 |
3
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝐹 = ( 𝑎 ∈ 𝐴 ↦ ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ) ) |
222 |
|
simpllr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑎 = 𝑐 ) ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑎 = 𝑐 ) |
223 |
222
|
fveq1d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑎 = 𝑐 ) ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → ( 𝑎 ‘ 𝑙 ) = ( 𝑐 ‘ 𝑙 ) ) |
224 |
223
|
sumeq2dv |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑎 = 𝑐 ) ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) = Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) |
225 |
224
|
oveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑎 = 𝑐 ) ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) = ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) |
226 |
225
|
mpteq2dva |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑎 = 𝑐 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ) |
227 |
|
simpll2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑐 ∈ 𝐴 ) |
228 |
|
fzfid |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 1 ... 𝐾 ) ∈ Fin ) |
229 |
228
|
mptexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ∈ V ) |
230 |
221 226 227 229
|
fvmptd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝐹 ‘ 𝑐 ) = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ) |
231 |
230
|
fveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) = ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ 𝑘 ) ) |
232 |
230
|
fveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) = ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ ( 𝑘 − 1 ) ) ) |
233 |
231 232
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) = ( ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ 𝑘 ) − ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ ( 𝑘 − 1 ) ) ) ) |
234 |
233
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) = ( ( ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ 𝑘 ) − ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) |
235 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ) |
236 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑗 = 𝑘 ) → 𝑗 = 𝑘 ) |
237 |
236
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑗 = 𝑘 ) → ( 1 ... 𝑗 ) = ( 1 ... 𝑘 ) ) |
238 |
237
|
sumeq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑗 = 𝑘 ) → Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) = Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) ) |
239 |
236 238
|
oveq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑗 = 𝑘 ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) = ( 𝑘 + Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) ) ) |
240 |
|
1zzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ∈ ℤ ) |
241 |
140
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝐾 ∈ ℤ ) |
242 |
241
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝐾 ∈ ℤ ) |
243 |
242
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝐾 ∈ ℤ ) |
244 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) → 𝑘 ∈ ℕ ) |
245 |
244
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑘 ∈ ℕ ) |
246 |
245
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑘 ∈ ℤ ) |
247 |
246
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 ∈ ℤ ) |
248 |
247
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ℤ ) |
249 |
245
|
nnge1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 1 ≤ 𝑘 ) |
250 |
249
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 1 ≤ 𝑘 ) |
251 |
250
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ≤ 𝑘 ) |
252 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
253 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 1 ∈ ℤ ) |
254 |
242
|
peano2zd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝐾 + 1 ) ∈ ℤ ) |
255 |
|
elfz |
⊢ ( ( 𝑘 ∈ ℤ ∧ 1 ∈ ℤ ∧ ( 𝐾 + 1 ) ∈ ℤ ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↔ ( 1 ≤ 𝑘 ∧ 𝑘 ≤ ( 𝐾 + 1 ) ) ) ) |
256 |
247 253 254 255
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↔ ( 1 ≤ 𝑘 ∧ 𝑘 ≤ ( 𝐾 + 1 ) ) ) ) |
257 |
256
|
biimpd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) → ( 1 ≤ 𝑘 ∧ 𝑘 ≤ ( 𝐾 + 1 ) ) ) ) |
258 |
252 257
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 1 ≤ 𝑘 ∧ 𝑘 ≤ ( 𝐾 + 1 ) ) ) |
259 |
258
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 ≤ ( 𝐾 + 1 ) ) |
260 |
|
neqne |
⊢ ( ¬ 𝑘 = ( 𝐾 + 1 ) → 𝑘 ≠ ( 𝐾 + 1 ) ) |
261 |
260
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 ≠ ( 𝐾 + 1 ) ) |
262 |
261
|
necomd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝐾 + 1 ) ≠ 𝑘 ) |
263 |
259 262
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝑘 ≤ ( 𝐾 + 1 ) ∧ ( 𝐾 + 1 ) ≠ 𝑘 ) ) |
264 |
247
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 ∈ ℝ ) |
265 |
254
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝐾 + 1 ) ∈ ℝ ) |
266 |
264 265
|
ltlend |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝑘 < ( 𝐾 + 1 ) ↔ ( 𝑘 ≤ ( 𝐾 + 1 ) ∧ ( 𝐾 + 1 ) ≠ 𝑘 ) ) ) |
267 |
263 266
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 < ( 𝐾 + 1 ) ) |
268 |
|
zleltp1 |
⊢ ( ( 𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 𝑘 ≤ 𝐾 ↔ 𝑘 < ( 𝐾 + 1 ) ) ) |
269 |
247 242 268
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝑘 ≤ 𝐾 ↔ 𝑘 < ( 𝐾 + 1 ) ) ) |
270 |
267 269
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 ≤ 𝐾 ) |
271 |
270
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ≤ 𝐾 ) |
272 |
240 243 248 251 271
|
elfzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ( 1 ... 𝐾 ) ) |
273 |
|
ovexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 + Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) ) ∈ V ) |
274 |
235 239 272 273
|
fvmptd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ 𝑘 ) = ( 𝑘 + Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) ) ) |
275 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑗 = ( 𝑘 − 1 ) ) → 𝑗 = ( 𝑘 − 1 ) ) |
276 |
275
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑗 = ( 𝑘 − 1 ) ) → ( 1 ... 𝑗 ) = ( 1 ... ( 𝑘 − 1 ) ) ) |
277 |
276
|
sumeq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑗 = ( 𝑘 − 1 ) ) → Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) = Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) |
278 |
275 277
|
oveq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑗 = ( 𝑘 − 1 ) ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) = ( ( 𝑘 − 1 ) + Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) |
279 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ∈ ℤ ) |
280 |
53
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = 1 ) → 𝐾 ∈ ℤ ) |
281 |
280
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝐾 ∈ ℤ ) |
282 |
244
|
nnzd |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) → 𝑘 ∈ ℤ ) |
283 |
282
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑘 ∈ ℤ ) |
284 |
283
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ℤ ) |
285 |
284
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ℤ ) |
286 |
285 279
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ∈ ℤ ) |
287 |
|
neqne |
⊢ ( ¬ 𝑘 = 1 → 𝑘 ≠ 1 ) |
288 |
287
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ≠ 1 ) |
289 |
108
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ∈ ℝ ) |
290 |
285
|
zred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ℝ ) |
291 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
292 |
|
elfzle1 |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) → 1 ≤ 𝑘 ) |
293 |
291 292
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ≤ 𝑘 ) |
294 |
289 290 293
|
leltned |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 1 < 𝑘 ↔ 𝑘 ≠ 1 ) ) |
295 |
288 294
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 < 𝑘 ) |
296 |
279 285
|
zltp1led |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 1 < 𝑘 ↔ ( 1 + 1 ) ≤ 𝑘 ) ) |
297 |
295 296
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 1 + 1 ) ≤ 𝑘 ) |
298 |
|
leaddsub |
⊢ ( ( 1 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( ( 1 + 1 ) ≤ 𝑘 ↔ 1 ≤ ( 𝑘 − 1 ) ) ) |
299 |
289 289 290 298
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 1 + 1 ) ≤ 𝑘 ↔ 1 ≤ ( 𝑘 − 1 ) ) ) |
300 |
297 299
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ≤ ( 𝑘 − 1 ) ) |
301 |
286
|
zred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ∈ ℝ ) |
302 |
55
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝐾 ∈ ℝ ) |
303 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ∈ ℝ ) |
304 |
302 303
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝐾 + 1 ) ∈ ℝ ) |
305 |
304 303
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝐾 + 1 ) − 1 ) ∈ ℝ ) |
306 |
|
elfzle2 |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) → 𝑘 ≤ ( 𝐾 + 1 ) ) |
307 |
306
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ≤ ( 𝐾 + 1 ) ) |
308 |
290 304 303 307
|
lesub1dd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ≤ ( ( 𝐾 + 1 ) − 1 ) ) |
309 |
64
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝐾 ∈ ℂ ) |
310 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ∈ ℂ ) |
311 |
309 310
|
pncand |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝐾 + 1 ) − 1 ) = 𝐾 ) |
312 |
56
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝐾 ≤ 𝐾 ) |
313 |
311 312
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝐾 + 1 ) − 1 ) ≤ 𝐾 ) |
314 |
301 305 302 308 313
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ≤ 𝐾 ) |
315 |
279 281 286 300 314
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ∈ ( 1 ... 𝐾 ) ) |
316 |
315
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ∈ ( 1 ... 𝐾 ) ) |
317 |
316
|
3adantl2 |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ∈ ( 1 ... 𝐾 ) ) |
318 |
317
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ∈ ( 1 ... 𝐾 ) ) |
319 |
|
ovexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝑘 − 1 ) + Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ∈ V ) |
320 |
235 278 318 319
|
fvmptd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ ( 𝑘 − 1 ) ) = ( ( 𝑘 − 1 ) + Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) |
321 |
274 320
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ 𝑘 ) − ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ ( 𝑘 − 1 ) ) ) = ( ( 𝑘 + Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) ) − ( ( 𝑘 − 1 ) + Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) ) |
322 |
321
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ 𝑘 ) − ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) = ( ( ( 𝑘 + Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) ) − ( ( 𝑘 − 1 ) + Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) − 1 ) ) |
323 |
248
|
zcnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ℂ ) |
324 |
|
fzfid |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 1 ... 𝑘 ) ∈ Fin ) |
325 |
|
1zzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → 1 ∈ ℤ ) |
326 |
243
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → 𝐾 ∈ ℤ ) |
327 |
326
|
peano2zd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → ( 𝐾 + 1 ) ∈ ℤ ) |
328 |
|
elfznn |
⊢ ( 𝑙 ∈ ( 1 ... 𝑘 ) → 𝑙 ∈ ℕ ) |
329 |
328
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → 𝑙 ∈ ℕ ) |
330 |
329
|
nnzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → 𝑙 ∈ ℤ ) |
331 |
329
|
nnge1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → 1 ≤ 𝑙 ) |
332 |
329
|
nnred |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → 𝑙 ∈ ℝ ) |
333 |
264
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → 𝑘 ∈ ℝ ) |
334 |
265
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → ( 𝐾 + 1 ) ∈ ℝ ) |
335 |
|
elfzle2 |
⊢ ( 𝑙 ∈ ( 1 ... 𝑘 ) → 𝑙 ≤ 𝑘 ) |
336 |
335
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → 𝑙 ≤ 𝑘 ) |
337 |
259
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → 𝑘 ≤ ( 𝐾 + 1 ) ) |
338 |
332 333 334 336 337
|
letrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → 𝑙 ≤ ( 𝐾 + 1 ) ) |
339 |
325 327 330 331 338
|
elfzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
340 |
97
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑐 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) |
341 |
340
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑐 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) |
342 |
341
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑐 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) |
343 |
342
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → 𝑐 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) |
344 |
343
|
ffvelrnda |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑐 ‘ 𝑙 ) ∈ ℕ0 ) |
345 |
339 344
|
mpdan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → ( 𝑐 ‘ 𝑙 ) ∈ ℕ0 ) |
346 |
324 345
|
fsumnn0cl |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) ∈ ℕ0 ) |
347 |
346
|
nn0cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) ∈ ℂ ) |
348 |
|
1cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ∈ ℂ ) |
349 |
323 348
|
subcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ∈ ℂ ) |
350 |
|
fzfid |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 1 ... ( 𝑘 − 1 ) ) ∈ Fin ) |
351 |
|
1zzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → 1 ∈ ℤ ) |
352 |
243
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → 𝐾 ∈ ℤ ) |
353 |
352
|
peano2zd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → ( 𝐾 + 1 ) ∈ ℤ ) |
354 |
|
elfznn |
⊢ ( 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) → 𝑙 ∈ ℕ ) |
355 |
354
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → 𝑙 ∈ ℕ ) |
356 |
355
|
nnzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → 𝑙 ∈ ℤ ) |
357 |
355
|
nnge1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → 1 ≤ 𝑙 ) |
358 |
355
|
nnred |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → 𝑙 ∈ ℝ ) |
359 |
264
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → 𝑘 ∈ ℝ ) |
360 |
|
1red |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → 1 ∈ ℝ ) |
361 |
359 360
|
resubcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → ( 𝑘 − 1 ) ∈ ℝ ) |
362 |
265
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → ( 𝐾 + 1 ) ∈ ℝ ) |
363 |
|
elfzle2 |
⊢ ( 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) → 𝑙 ≤ ( 𝑘 − 1 ) ) |
364 |
363
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → 𝑙 ≤ ( 𝑘 − 1 ) ) |
365 |
359
|
lem1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → ( 𝑘 − 1 ) ≤ 𝑘 ) |
366 |
259
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → 𝑘 ≤ ( 𝐾 + 1 ) ) |
367 |
361 359 362 365 366
|
letrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → ( 𝑘 − 1 ) ≤ ( 𝐾 + 1 ) ) |
368 |
358 361 362 364 367
|
letrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → 𝑙 ≤ ( 𝐾 + 1 ) ) |
369 |
351 353 356 357 368
|
elfzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
370 |
342
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → 𝑐 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) |
371 |
370
|
ffvelrnda |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑐 ‘ 𝑙 ) ∈ ℕ0 ) |
372 |
369 371
|
mpdan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → ( 𝑐 ‘ 𝑙 ) ∈ ℕ0 ) |
373 |
350 372
|
fsumnn0cl |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ∈ ℕ0 ) |
374 |
373
|
nn0cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ∈ ℂ ) |
375 |
323 347 349 374
|
addsub4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝑘 + Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) ) − ( ( 𝑘 − 1 ) + Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) = ( ( 𝑘 − ( 𝑘 − 1 ) ) + ( Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) − Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) ) |
376 |
375
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( 𝑘 + Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) ) − ( ( 𝑘 − 1 ) + Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) − 1 ) = ( ( ( 𝑘 − ( 𝑘 − 1 ) ) + ( Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) − Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) − 1 ) ) |
377 |
323 348
|
nncand |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − ( 𝑘 − 1 ) ) = 1 ) |
378 |
377
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝑘 − ( 𝑘 − 1 ) ) + ( Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) − Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) = ( 1 + ( Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) − Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) ) |
379 |
378
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( 𝑘 − ( 𝑘 − 1 ) ) + ( Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) − Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) − 1 ) = ( ( 1 + ( Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) − Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) − 1 ) ) |
380 |
347 374
|
subcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) − Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ∈ ℂ ) |
381 |
348 380
|
pncan2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 1 + ( Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) − Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) − 1 ) = ( Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) − Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) |
382 |
139
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 1 ∈ ℤ ) |
383 |
382 246 249
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 1 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ) ) |
384 |
|
eluz2 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) ↔ ( 1 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ) ) |
385 |
383 384
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
386 |
385
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
387 |
386
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
388 |
345
|
nn0cnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → ( 𝑐 ‘ 𝑙 ) ∈ ℂ ) |
389 |
|
fveq2 |
⊢ ( 𝑙 = 𝑘 → ( 𝑐 ‘ 𝑙 ) = ( 𝑐 ‘ 𝑘 ) ) |
390 |
387 388 389
|
fsumm1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) = ( Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) + ( 𝑐 ‘ 𝑘 ) ) ) |
391 |
390
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) + ( 𝑐 ‘ 𝑘 ) ) = Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) ) |
392 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
393 |
340 392
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑐 ‘ 𝑘 ) ∈ ℕ0 ) |
394 |
393
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑐 ‘ 𝑘 ) ∈ ℂ ) |
395 |
394
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝑐 ‘ 𝑘 ) ∈ ℂ ) |
396 |
395
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑐 ‘ 𝑘 ) ∈ ℂ ) |
397 |
347 374 396
|
subaddd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) − Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) = ( 𝑐 ‘ 𝑘 ) ↔ ( Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) + ( 𝑐 ‘ 𝑘 ) ) = Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) ) ) |
398 |
391 397
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) − Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) = ( 𝑐 ‘ 𝑘 ) ) |
399 |
381 398
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 1 + ( Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) − Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) − 1 ) = ( 𝑐 ‘ 𝑘 ) ) |
400 |
379 399
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( 𝑘 − ( 𝑘 − 1 ) ) + ( Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) − Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) − 1 ) = ( 𝑐 ‘ 𝑘 ) ) |
401 |
376 400
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( 𝑘 + Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( 𝑐 ‘ 𝑙 ) ) − ( ( 𝑘 − 1 ) + Σ 𝑙 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( 𝑐 ‘ 𝑙 ) ) ) − 1 ) = ( 𝑐 ‘ 𝑘 ) ) |
402 |
322 401
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ 𝑘 ) − ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑐 ‘ 𝑙 ) ) ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) = ( 𝑐 ‘ 𝑘 ) ) |
403 |
234 402
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) = ( 𝑐 ‘ 𝑘 ) ) |
404 |
220 403
|
ifeqda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → if ( 𝑘 = 1 , ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) , ( ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = ( 𝑐 ‘ 𝑘 ) ) |
405 |
166 404
|
ifeqda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) , ( ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = ( 𝑐 ‘ 𝑘 ) ) |
406 |
405
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) , ( ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = ( 𝑐 ‘ 𝑘 ) ) |
407 |
406
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) , ( ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ ( 𝑐 ‘ 𝑘 ) ) ) |
408 |
97
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝑐 Fn ( 1 ... ( 𝐾 + 1 ) ) ) |
409 |
|
dffn5 |
⊢ ( 𝑐 Fn ( 1 ... ( 𝐾 + 1 ) ) ↔ 𝑐 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ ( 𝑐 ‘ 𝑘 ) ) ) |
410 |
409
|
biimpi |
⊢ ( 𝑐 Fn ( 1 ... ( 𝐾 + 1 ) ) → 𝑐 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ ( 𝑐 ‘ 𝑘 ) ) ) |
411 |
408 410
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝑐 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ ( 𝑐 ‘ 𝑘 ) ) ) |
412 |
411
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ ( 𝑐 ‘ 𝑘 ) ) = 𝑐 ) |
413 |
407 412
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( ( 𝐹 ‘ 𝑐 ) ‘ 1 ) − 1 ) , ( ( ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) = 𝑐 ) |
414 |
37 413
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑐 ) ) = 𝑐 ) |
415 |
414
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑐 ∈ 𝐴 ( 𝐺 ‘ ( 𝐹 ‘ 𝑐 ) ) = 𝑐 ) |
416 |
1 2 3 4 5 6
|
sticksstones12a |
⊢ ( 𝜑 → ∀ 𝑑 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑑 ) ) = 𝑑 ) |
417 |
8 9 415 416
|
2fvidf1od |
⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |