Metamath Proof Explorer


Theorem sticksstones12

Description: Establish bijective mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 6-Oct-2024)

Ref Expression
Hypotheses sticksstones12.1 φ N 0
sticksstones12.2 φ K
sticksstones12.3 F = a A j 1 K j + l = 1 j a l
sticksstones12.4 G = b B if K = 0 1 N k 1 K + 1 if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1
sticksstones12.5 A = g | g : 1 K + 1 0 i = 1 K + 1 g i = N
sticksstones12.6 B = f | f : 1 K 1 N + K x 1 K y 1 K x < y f x < f y
Assertion sticksstones12 φ F : A 1-1 onto B

Proof

Step Hyp Ref Expression
1 sticksstones12.1 φ N 0
2 sticksstones12.2 φ K
3 sticksstones12.3 F = a A j 1 K j + l = 1 j a l
4 sticksstones12.4 G = b B if K = 0 1 N k 1 K + 1 if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1
5 sticksstones12.5 A = g | g : 1 K + 1 0 i = 1 K + 1 g i = N
6 sticksstones12.6 B = f | f : 1 K 1 N + K x 1 K y 1 K x < y f x < f y
7 2 nnnn0d φ K 0
8 1 7 3 5 6 sticksstones8 φ F : A B
9 1 2 4 5 6 sticksstones10 φ G : B A
10 4 a1i φ G = b B if K = 0 1 N k 1 K + 1 if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1
11 0red φ 0
12 2 nngt0d φ 0 < K
13 11 12 ltned φ 0 K
14 13 necomd φ K 0
15 14 neneqd φ ¬ K = 0
16 15 iffalsed φ if K = 0 1 N k 1 K + 1 if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1 = k 1 K + 1 if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1
17 16 adantr φ b B if K = 0 1 N k 1 K + 1 if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1 = k 1 K + 1 if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1
18 17 mpteq2dva φ b B if K = 0 1 N k 1 K + 1 if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1 = b B k 1 K + 1 if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1
19 10 18 eqtrd φ G = b B k 1 K + 1 if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1
20 19 adantr φ c A G = b B k 1 K + 1 if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1
21 fveq1 b = F c b K = F c K
22 21 oveq2d b = F c N + K - b K = N + K - F c K
23 fveq1 b = F c b 1 = F c 1
24 23 oveq1d b = F c b 1 1 = F c 1 1
25 fveq1 b = F c b k = F c k
26 fveq1 b = F c b k 1 = F c k 1
27 25 26 oveq12d b = F c b k b k 1 = F c k F c k 1
28 27 oveq1d b = F c b k - b k 1 - 1 = F c k - F c k 1 - 1
29 24 28 ifeq12d b = F c if k = 1 b 1 1 b k - b k 1 - 1 = if k = 1 F c 1 1 F c k - F c k 1 - 1
30 22 29 ifeq12d b = F c if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1 = if k = K + 1 N + K - F c K if k = 1 F c 1 1 F c k - F c k 1 - 1
31 30 adantr b = F c k 1 K + 1 if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1 = if k = K + 1 N + K - F c K if k = 1 F c 1 1 F c k - F c k 1 - 1
32 31 mpteq2dva b = F c k 1 K + 1 if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1 = k 1 K + 1 if k = K + 1 N + K - F c K if k = 1 F c 1 1 F c k - F c k 1 - 1
33 32 adantl φ c A b = F c k 1 K + 1 if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1 = k 1 K + 1 if k = K + 1 N + K - F c K if k = 1 F c 1 1 F c k - F c k 1 - 1
34 8 ffvelcdmda φ c A F c B
35 fzfid φ c A 1 K + 1 Fin
36 35 mptexd φ c A k 1 K + 1 if k = K + 1 N + K - F c K if k = 1 F c 1 1 F c k - F c k 1 - 1 V
37 20 33 34 36 fvmptd φ c A G F c = k 1 K + 1 if k = K + 1 N + K - F c K if k = 1 F c 1 1 F c k - F c k 1 - 1
38 3 a1i φ c A F = a A j 1 K j + l = 1 j a l
39 simpllr φ c A a = c j 1 K l 1 j a = c
40 39 fveq1d φ c A a = c j 1 K l 1 j a l = c l
41 40 sumeq2dv φ c A a = c j 1 K l = 1 j a l = l = 1 j c l
42 41 oveq2d φ c A a = c j 1 K j + l = 1 j a l = j + l = 1 j c l
43 42 mpteq2dva φ c A a = c j 1 K j + l = 1 j a l = j 1 K j + l = 1 j c l
44 simpr φ c A c A
45 fzfid φ c A 1 K Fin
46 45 mptexd φ c A j 1 K j + l = 1 j c l V
47 38 43 44 46 fvmptd φ c A F c = j 1 K j + l = 1 j c l
48 simpr φ c A j = K j = K
49 48 oveq2d φ c A j = K 1 j = 1 K
50 49 sumeq1d φ c A j = K l = 1 j c l = l = 1 K c l
51 48 50 oveq12d φ c A j = K j + l = 1 j c l = K + l = 1 K c l
52 1zzd φ 1
53 7 nn0zd φ K
54 2 nnge1d φ 1 K
55 2 nnred φ K
56 55 leidd φ K K
57 52 53 53 54 56 elfzd φ K 1 K
58 57 adantr φ c A K 1 K
59 ovexd φ c A K + l = 1 K c l V
60 47 51 58 59 fvmptd φ c A F c K = K + l = 1 K c l
61 60 oveq2d φ c A N + K - F c K = N + K - K + l = 1 K c l
62 1 nn0cnd φ N
63 62 adantr φ c A N
64 55 recnd φ K
65 64 adantr φ c A K
66 63 65 addcomd φ c A N + K = K + N
67 66 oveq1d φ c A N + K - K + l = 1 K c l = K + N - K + l = 1 K c l
68 1zzd φ c A l 1 K 1
69 53 ad2antrr φ c A l 1 K K
70 69 peano2zd φ c A l 1 K K + 1
71 elfzelz l 1 K l
72 71 adantl φ c A l 1 K l
73 elfzle1 l 1 K 1 l
74 73 adantl φ c A l 1 K 1 l
75 72 zred φ c A l 1 K l
76 55 ad2antrr φ c A l 1 K K
77 70 zred φ c A l 1 K K + 1
78 elfzle2 l 1 K l K
79 78 adantl φ c A l 1 K l K
80 76 lep1d φ c A l 1 K K K + 1
81 75 76 77 79 80 letrd φ c A l 1 K l K + 1
82 68 70 72 74 81 elfzd φ c A l 1 K l 1 K + 1
83 5 eleq2i c A c g | g : 1 K + 1 0 i = 1 K + 1 g i = N
84 83 biimpi c A c g | g : 1 K + 1 0 i = 1 K + 1 g i = N
85 84 adantl φ c A c g | g : 1 K + 1 0 i = 1 K + 1 g i = N
86 vex c V
87 feq1 g = c g : 1 K + 1 0 c : 1 K + 1 0
88 simpl g = c i 1 K + 1 g = c
89 88 fveq1d g = c i 1 K + 1 g i = c i
90 89 sumeq2dv g = c i = 1 K + 1 g i = i = 1 K + 1 c i
91 90 eqeq1d g = c i = 1 K + 1 g i = N i = 1 K + 1 c i = N
92 87 91 anbi12d g = c g : 1 K + 1 0 i = 1 K + 1 g i = N c : 1 K + 1 0 i = 1 K + 1 c i = N
93 86 92 elab c g | g : 1 K + 1 0 i = 1 K + 1 g i = N c : 1 K + 1 0 i = 1 K + 1 c i = N
94 93 a1i φ c A c g | g : 1 K + 1 0 i = 1 K + 1 g i = N c : 1 K + 1 0 i = 1 K + 1 c i = N
95 94 biimpd φ c A c g | g : 1 K + 1 0 i = 1 K + 1 g i = N c : 1 K + 1 0 i = 1 K + 1 c i = N
96 85 95 mpd φ c A c : 1 K + 1 0 i = 1 K + 1 c i = N
97 96 simpld φ c A c : 1 K + 1 0
98 97 adantr φ c A l 1 K c : 1 K + 1 0
99 98 ffvelcdmda φ c A l 1 K l 1 K + 1 c l 0
100 82 99 mpdan φ c A l 1 K c l 0
101 45 100 fsumnn0cl φ c A l = 1 K c l 0
102 101 nn0cnd φ c A l = 1 K c l
103 65 63 102 pnpcand φ c A K + N - K + l = 1 K c l = N l = 1 K c l
104 eqid 1 = 1
105 1p0e1 1 + 0 = 1
106 104 105 eqtr4i 1 = 1 + 0
107 106 a1i φ 1 = 1 + 0
108 1red φ 1
109 0le1 0 1
110 109 a1i φ 0 1
111 108 11 55 108 54 110 le2addd φ 1 + 0 K + 1
112 107 111 eqbrtrd φ 1 K + 1
113 53 peano2zd φ K + 1
114 eluz 1 K + 1 K + 1 1 1 K + 1
115 52 113 114 syl2anc φ K + 1 1 1 K + 1
116 112 115 mpbird φ K + 1 1
117 116 adantr φ c A K + 1 1
118 97 ffvelcdmda φ c A l 1 K + 1 c l 0
119 118 nn0cnd φ c A l 1 K + 1 c l
120 fveq2 l = K + 1 c l = c K + 1
121 117 119 120 fsumm1 φ c A l = 1 K + 1 c l = l = 1 K + 1 - 1 c l + c K + 1
122 1cnd φ c A 1
123 65 122 pncand φ c A K + 1 - 1 = K
124 123 oveq2d φ c A 1 K + 1 - 1 = 1 K
125 124 sumeq1d φ c A l = 1 K + 1 - 1 c l = l = 1 K c l
126 125 oveq1d φ c A l = 1 K + 1 - 1 c l + c K + 1 = l = 1 K c l + c K + 1
127 121 126 eqtrd φ c A l = 1 K + 1 c l = l = 1 K c l + c K + 1
128 127 eqcomd φ c A l = 1 K c l + c K + 1 = l = 1 K + 1 c l
129 fveq2 l = i c l = c i
130 nfcv _ i c l
131 nfcv _ l c i
132 129 130 131 cbvsum l = 1 K + 1 c l = i = 1 K + 1 c i
133 132 a1i φ c A l = 1 K + 1 c l = i = 1 K + 1 c i
134 96 simprd φ c A i = 1 K + 1 c i = N
135 133 134 eqtrd φ c A l = 1 K + 1 c l = N
136 128 135 eqtrd φ c A l = 1 K c l + c K + 1 = N
137 1zzd φ c A 1
138 53 adantr φ c A K
139 138 peano2zd φ c A K + 1
140 1e0p1 1 = 0 + 1
141 140 a1i φ c A 1 = 0 + 1
142 0red φ c A 0
143 55 adantr φ c A K
144 1red φ c A 1
145 11 55 12 ltled φ 0 K
146 145 adantr φ c A 0 K
147 142 143 144 146 leadd1dd φ c A 0 + 1 K + 1
148 141 147 eqbrtrd φ c A 1 K + 1
149 55 55 108 56 leadd1dd φ K + 1 K + 1
150 149 adantr φ c A K + 1 K + 1
151 137 139 139 148 150 elfzd φ c A K + 1 1 K + 1
152 97 151 ffvelcdmd φ c A c K + 1 0
153 152 nn0cnd φ c A c K + 1
154 63 102 153 subaddd φ c A N l = 1 K c l = c K + 1 l = 1 K c l + c K + 1 = N
155 136 154 mpbird φ c A N l = 1 K c l = c K + 1
156 103 155 eqtrd φ c A K + N - K + l = 1 K c l = c K + 1
157 67 156 eqtrd φ c A N + K - K + l = 1 K c l = c K + 1
158 61 157 eqtrd φ c A N + K - F c K = c K + 1
159 158 3adant3 φ c A k 1 K + 1 N + K - F c K = c K + 1
160 159 adantr φ c A k 1 K + 1 k = K + 1 N + K - F c K = c K + 1
161 simpr φ c A k 1 K + 1 k = K + 1 k = K + 1
162 161 fveq2d φ c A k 1 K + 1 k = K + 1 c k = c K + 1
163 162 eqcomd φ c A k 1 K + 1 k = K + 1 c K + 1 = c k
164 160 163 eqtrd φ c A k 1 K + 1 k = K + 1 N + K - F c K = c k
165 47 fveq1d φ c A F c 1 = j 1 K j + l = 1 j c l 1
166 165 oveq1d φ c A F c 1 1 = j 1 K j + l = 1 j c l 1 1
167 eqidd φ c A j 1 K j + l = 1 j c l = j 1 K j + l = 1 j c l
168 simpr φ c A j = 1 j = 1
169 168 oveq2d φ c A j = 1 1 j = 1 1
170 169 sumeq1d φ c A j = 1 l = 1 j c l = l = 1 1 c l
171 168 170 oveq12d φ c A j = 1 j + l = 1 j c l = 1 + l = 1 1 c l
172 144 leidd φ c A 1 1
173 54 adantr φ c A 1 K
174 137 138 137 172 173 elfzd φ c A 1 1 K
175 ovexd φ c A 1 + l = 1 1 c l V
176 167 171 174 175 fvmptd φ c A j 1 K j + l = 1 j c l 1 = 1 + l = 1 1 c l
177 176 oveq1d φ c A j 1 K j + l = 1 j c l 1 1 = 1 + l = 1 1 c l - 1
178 fzfid φ c A 1 1 Fin
179 1zzd φ c A l 1 1 1
180 138 adantr φ c A l 1 1 K
181 180 peano2zd φ c A l 1 1 K + 1
182 elfzelz l 1 1 l
183 182 adantl φ c A l 1 1 l
184 elfzle1 l 1 1 1 l
185 184 adantl φ c A l 1 1 1 l
186 183 zred φ c A l 1 1 l
187 0red φ c A l 1 1 0
188 1red φ c A l 1 1 1
189 187 188 readdcld φ c A l 1 1 0 + 1
190 181 zred φ c A l 1 1 K + 1
191 elfzle2 l 1 1 l 1
192 191 adantl φ c A l 1 1 l 1
193 140 a1i φ c A l 1 1 1 = 0 + 1
194 192 193 breqtrd φ c A l 1 1 l 0 + 1
195 147 adantr φ c A l 1 1 0 + 1 K + 1
196 186 189 190 194 195 letrd φ c A l 1 1 l K + 1
197 179 181 183 185 196 elfzd φ c A l 1 1 l 1 K + 1
198 118 adantlr φ c A l 1 1 l 1 K + 1 c l 0
199 197 198 mpdan φ c A l 1 1 c l 0
200 178 199 fsumnn0cl φ c A l = 1 1 c l 0
201 200 nn0cnd φ c A l = 1 1 c l
202 122 201 pncan2d φ c A 1 + l = 1 1 c l - 1 = l = 1 1 c l
203 137 139 137 172 148 elfzd φ c A 1 1 K + 1
204 97 203 ffvelcdmd φ c A c 1 0
205 204 nn0cnd φ c A c 1
206 fveq2 l = 1 c l = c 1
207 206 fsum1 1 c 1 l = 1 1 c l = c 1
208 137 205 207 syl2anc φ c A l = 1 1 c l = c 1
209 202 208 eqtrd φ c A 1 + l = 1 1 c l - 1 = c 1
210 177 209 eqtrd φ c A j 1 K j + l = 1 j c l 1 1 = c 1
211 166 210 eqtrd φ c A F c 1 1 = c 1
212 211 3adant3 φ c A k 1 K + 1 F c 1 1 = c 1
213 212 adantr φ c A k 1 K + 1 ¬ k = K + 1 F c 1 1 = c 1
214 213 adantr φ c A k 1 K + 1 ¬ k = K + 1 k = 1 F c 1 1 = c 1
215 simpr φ c A k 1 K + 1 ¬ k = K + 1 k = 1 k = 1
216 215 fveq2d φ c A k 1 K + 1 ¬ k = K + 1 k = 1 c k = c 1
217 216 eqcomd φ c A k 1 K + 1 ¬ k = K + 1 k = 1 c 1 = c k
218 214 217 eqtrd φ c A k 1 K + 1 ¬ k = K + 1 k = 1 F c 1 1 = c k
219 3 a1i φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 F = a A j 1 K j + l = 1 j a l
220 simpllr φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 a = c j 1 K l 1 j a = c
221 220 fveq1d φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 a = c j 1 K l 1 j a l = c l
222 221 sumeq2dv φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 a = c j 1 K l = 1 j a l = l = 1 j c l
223 222 oveq2d φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 a = c j 1 K j + l = 1 j a l = j + l = 1 j c l
224 223 mpteq2dva φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 a = c j 1 K j + l = 1 j a l = j 1 K j + l = 1 j c l
225 simpll2 φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 c A
226 fzfid φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 1 K Fin
227 226 mptexd φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 j 1 K j + l = 1 j c l V
228 219 224 225 227 fvmptd φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 F c = j 1 K j + l = 1 j c l
229 228 fveq1d φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 F c k = j 1 K j + l = 1 j c l k
230 228 fveq1d φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 F c k 1 = j 1 K j + l = 1 j c l k 1
231 229 230 oveq12d φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 F c k F c k 1 = j 1 K j + l = 1 j c l k j 1 K j + l = 1 j c l k 1
232 231 oveq1d φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 F c k - F c k 1 - 1 = j 1 K j + l = 1 j c l k - j 1 K j + l = 1 j c l k 1 - 1
233 eqidd φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 j 1 K j + l = 1 j c l = j 1 K j + l = 1 j c l
234 simpr φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 j = k j = k
235 234 oveq2d φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 j = k 1 j = 1 k
236 235 sumeq1d φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 j = k l = 1 j c l = l = 1 k c l
237 234 236 oveq12d φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 j = k j + l = 1 j c l = k + l = 1 k c l
238 1zzd φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 1
239 138 3adant3 φ c A k 1 K + 1 K
240 239 adantr φ c A k 1 K + 1 ¬ k = K + 1 K
241 240 adantr φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 K
242 elfznn k 1 K + 1 k
243 242 3ad2ant3 φ c A k 1 K + 1 k
244 243 nnzd φ c A k 1 K + 1 k
245 244 adantr φ c A k 1 K + 1 ¬ k = K + 1 k
246 245 adantr φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k
247 243 nnge1d φ c A k 1 K + 1 1 k
248 247 adantr φ c A k 1 K + 1 ¬ k = K + 1 1 k
249 248 adantr φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 1 k
250 simpl3 φ c A k 1 K + 1 ¬ k = K + 1 k 1 K + 1
251 1zzd φ c A k 1 K + 1 ¬ k = K + 1 1
252 240 peano2zd φ c A k 1 K + 1 ¬ k = K + 1 K + 1
253 elfz k 1 K + 1 k 1 K + 1 1 k k K + 1
254 245 251 252 253 syl3anc φ c A k 1 K + 1 ¬ k = K + 1 k 1 K + 1 1 k k K + 1
255 254 biimpd φ c A k 1 K + 1 ¬ k = K + 1 k 1 K + 1 1 k k K + 1
256 250 255 mpd φ c A k 1 K + 1 ¬ k = K + 1 1 k k K + 1
257 256 simprd φ c A k 1 K + 1 ¬ k = K + 1 k K + 1
258 neqne ¬ k = K + 1 k K + 1
259 258 adantl φ c A k 1 K + 1 ¬ k = K + 1 k K + 1
260 259 necomd φ c A k 1 K + 1 ¬ k = K + 1 K + 1 k
261 257 260 jca φ c A k 1 K + 1 ¬ k = K + 1 k K + 1 K + 1 k
262 245 zred φ c A k 1 K + 1 ¬ k = K + 1 k
263 252 zred φ c A k 1 K + 1 ¬ k = K + 1 K + 1
264 262 263 ltlend φ c A k 1 K + 1 ¬ k = K + 1 k < K + 1 k K + 1 K + 1 k
265 261 264 mpbird φ c A k 1 K + 1 ¬ k = K + 1 k < K + 1
266 zleltp1 k K k K k < K + 1
267 245 240 266 syl2anc φ c A k 1 K + 1 ¬ k = K + 1 k K k < K + 1
268 265 267 mpbird φ c A k 1 K + 1 ¬ k = K + 1 k K
269 268 adantr φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k K
270 238 241 246 249 269 elfzd φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k 1 K
271 ovexd φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k + l = 1 k c l V
272 233 237 270 271 fvmptd φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 j 1 K j + l = 1 j c l k = k + l = 1 k c l
273 simpr φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 j = k 1 j = k 1
274 273 oveq2d φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 j = k 1 1 j = 1 k 1
275 274 sumeq1d φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 j = k 1 l = 1 j c l = l = 1 k 1 c l
276 273 275 oveq12d φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 j = k 1 j + l = 1 j c l = k - 1 + l = 1 k 1 c l
277 1zzd φ k 1 K + 1 ¬ k = 1 1
278 53 ad2antrr φ k 1 K + 1 ¬ k = 1 K
279 278 3impa φ k 1 K + 1 ¬ k = 1 K
280 242 nnzd k 1 K + 1 k
281 280 adantl φ k 1 K + 1 k
282 281 adantr φ k 1 K + 1 ¬ k = 1 k
283 282 3impa φ k 1 K + 1 ¬ k = 1 k
284 283 277 zsubcld φ k 1 K + 1 ¬ k = 1 k 1
285 neqne ¬ k = 1 k 1
286 285 3ad2ant3 φ k 1 K + 1 ¬ k = 1 k 1
287 108 3ad2ant1 φ k 1 K + 1 ¬ k = 1 1
288 283 zred φ k 1 K + 1 ¬ k = 1 k
289 simp2 φ k 1 K + 1 ¬ k = 1 k 1 K + 1
290 elfzle1 k 1 K + 1 1 k
291 289 290 syl φ k 1 K + 1 ¬ k = 1 1 k
292 287 288 291 leltned φ k 1 K + 1 ¬ k = 1 1 < k k 1
293 286 292 mpbird φ k 1 K + 1 ¬ k = 1 1 < k
294 277 283 zltp1led φ k 1 K + 1 ¬ k = 1 1 < k 1 + 1 k
295 293 294 mpbid φ k 1 K + 1 ¬ k = 1 1 + 1 k
296 leaddsub 1 1 k 1 + 1 k 1 k 1
297 287 287 288 296 syl3anc φ k 1 K + 1 ¬ k = 1 1 + 1 k 1 k 1
298 295 297 mpbid φ k 1 K + 1 ¬ k = 1 1 k 1
299 284 zred φ k 1 K + 1 ¬ k = 1 k 1
300 55 3ad2ant1 φ k 1 K + 1 ¬ k = 1 K
301 1red φ k 1 K + 1 ¬ k = 1 1
302 300 301 readdcld φ k 1 K + 1 ¬ k = 1 K + 1
303 302 301 resubcld φ k 1 K + 1 ¬ k = 1 K + 1 - 1
304 elfzle2 k 1 K + 1 k K + 1
305 304 3ad2ant2 φ k 1 K + 1 ¬ k = 1 k K + 1
306 288 302 301 305 lesub1dd φ k 1 K + 1 ¬ k = 1 k 1 K + 1 - 1
307 64 3ad2ant1 φ k 1 K + 1 ¬ k = 1 K
308 1cnd φ k 1 K + 1 ¬ k = 1 1
309 307 308 pncand φ k 1 K + 1 ¬ k = 1 K + 1 - 1 = K
310 56 3ad2ant1 φ k 1 K + 1 ¬ k = 1 K K
311 309 310 eqbrtrd φ k 1 K + 1 ¬ k = 1 K + 1 - 1 K
312 299 303 300 306 311 letrd φ k 1 K + 1 ¬ k = 1 k 1 K
313 277 279 284 298 312 elfzd φ k 1 K + 1 ¬ k = 1 k 1 1 K
314 313 3expa φ k 1 K + 1 ¬ k = 1 k 1 1 K
315 314 3adantl2 φ c A k 1 K + 1 ¬ k = 1 k 1 1 K
316 315 adantlr φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k 1 1 K
317 ovexd φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k - 1 + l = 1 k 1 c l V
318 233 276 316 317 fvmptd φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 j 1 K j + l = 1 j c l k 1 = k - 1 + l = 1 k 1 c l
319 272 318 oveq12d φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 j 1 K j + l = 1 j c l k j 1 K j + l = 1 j c l k 1 = k + l = 1 k c l - k - 1 + l = 1 k 1 c l
320 319 oveq1d φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 j 1 K j + l = 1 j c l k - j 1 K j + l = 1 j c l k 1 - 1 = k + l = 1 k c l - k - 1 + l = 1 k 1 c l - 1
321 246 zcnd φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k
322 fzfid φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 1 k Fin
323 1zzd φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k 1
324 241 adantr φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k K
325 324 peano2zd φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k K + 1
326 elfznn l 1 k l
327 326 adantl φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k l
328 327 nnzd φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k l
329 327 nnge1d φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k 1 l
330 327 nnred φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k l
331 262 ad2antrr φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k k
332 263 ad2antrr φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k K + 1
333 elfzle2 l 1 k l k
334 333 adantl φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k l k
335 257 ad2antrr φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k k K + 1
336 330 331 332 334 335 letrd φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k l K + 1
337 323 325 328 329 336 elfzd φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k l 1 K + 1
338 97 3adant3 φ c A k 1 K + 1 c : 1 K + 1 0
339 338 adantr φ c A k 1 K + 1 ¬ k = K + 1 c : 1 K + 1 0
340 339 adantr φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 c : 1 K + 1 0
341 340 adantr φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k c : 1 K + 1 0
342 341 ffvelcdmda φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k l 1 K + 1 c l 0
343 337 342 mpdan φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k c l 0
344 322 343 fsumnn0cl φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l = 1 k c l 0
345 344 nn0cnd φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l = 1 k c l
346 1cnd φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 1
347 321 346 subcld φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k 1
348 fzfid φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 1 k 1 Fin
349 1zzd φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k 1 1
350 241 adantr φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k 1 K
351 350 peano2zd φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k 1 K + 1
352 elfznn l 1 k 1 l
353 352 adantl φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k 1 l
354 353 nnzd φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k 1 l
355 353 nnge1d φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k 1 1 l
356 353 nnred φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k 1 l
357 262 ad2antrr φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k 1 k
358 1red φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k 1 1
359 357 358 resubcld φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k 1 k 1
360 263 ad2antrr φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k 1 K + 1
361 elfzle2 l 1 k 1 l k 1
362 361 adantl φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k 1 l k 1
363 357 lem1d φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k 1 k 1 k
364 257 ad2antrr φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k 1 k K + 1
365 359 357 360 363 364 letrd φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k 1 k 1 K + 1
366 356 359 360 362 365 letrd φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k 1 l K + 1
367 349 351 354 355 366 elfzd φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k 1 l 1 K + 1
368 340 adantr φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k 1 c : 1 K + 1 0
369 368 ffvelcdmda φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k 1 l 1 K + 1 c l 0
370 367 369 mpdan φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k 1 c l 0
371 348 370 fsumnn0cl φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l = 1 k 1 c l 0
372 371 nn0cnd φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l = 1 k 1 c l
373 321 345 347 372 addsub4d φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k + l = 1 k c l - k - 1 + l = 1 k 1 c l = k k 1 + l = 1 k c l - l = 1 k 1 c l
374 373 oveq1d φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k + l = 1 k c l - k - 1 + l = 1 k 1 c l - 1 = k k 1 + l = 1 k c l l = 1 k 1 c l - 1
375 321 346 nncand φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k k 1 = 1
376 375 oveq1d φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k k 1 + l = 1 k c l - l = 1 k 1 c l = 1 + l = 1 k c l - l = 1 k 1 c l
377 376 oveq1d φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k k 1 + l = 1 k c l l = 1 k 1 c l - 1 = 1 + l = 1 k c l l = 1 k 1 c l - 1
378 345 372 subcld φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l = 1 k c l l = 1 k 1 c l
379 346 378 pncan2d φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 1 + l = 1 k c l l = 1 k 1 c l - 1 = l = 1 k c l l = 1 k 1 c l
380 137 3adant3 φ c A k 1 K + 1 1
381 380 244 247 3jca φ c A k 1 K + 1 1 k 1 k
382 eluz2 k 1 1 k 1 k
383 381 382 sylibr φ c A k 1 K + 1 k 1
384 383 adantr φ c A k 1 K + 1 ¬ k = K + 1 k 1
385 384 adantr φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k 1
386 343 nn0cnd φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l 1 k c l
387 fveq2 l = k c l = c k
388 385 386 387 fsumm1 φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l = 1 k c l = l = 1 k 1 c l + c k
389 388 eqcomd φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l = 1 k 1 c l + c k = l = 1 k c l
390 simp3 φ c A k 1 K + 1 k 1 K + 1
391 338 390 ffvelcdmd φ c A k 1 K + 1 c k 0
392 391 nn0cnd φ c A k 1 K + 1 c k
393 392 adantr φ c A k 1 K + 1 ¬ k = K + 1 c k
394 393 adantr φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 c k
395 345 372 394 subaddd φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l = 1 k c l l = 1 k 1 c l = c k l = 1 k 1 c l + c k = l = 1 k c l
396 389 395 mpbird φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 l = 1 k c l l = 1 k 1 c l = c k
397 379 396 eqtrd φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 1 + l = 1 k c l l = 1 k 1 c l - 1 = c k
398 377 397 eqtrd φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k k 1 + l = 1 k c l l = 1 k 1 c l - 1 = c k
399 374 398 eqtrd φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k + l = 1 k c l - k - 1 + l = 1 k 1 c l - 1 = c k
400 320 399 eqtrd φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 j 1 K j + l = 1 j c l k - j 1 K j + l = 1 j c l k 1 - 1 = c k
401 232 400 eqtrd φ c A k 1 K + 1 ¬ k = K + 1 ¬ k = 1 F c k - F c k 1 - 1 = c k
402 218 401 ifeqda φ c A k 1 K + 1 ¬ k = K + 1 if k = 1 F c 1 1 F c k - F c k 1 - 1 = c k
403 164 402 ifeqda φ c A k 1 K + 1 if k = K + 1 N + K - F c K if k = 1 F c 1 1 F c k - F c k 1 - 1 = c k
404 403 3expa φ c A k 1 K + 1 if k = K + 1 N + K - F c K if k = 1 F c 1 1 F c k - F c k 1 - 1 = c k
405 404 mpteq2dva φ c A k 1 K + 1 if k = K + 1 N + K - F c K if k = 1 F c 1 1 F c k - F c k 1 - 1 = k 1 K + 1 c k
406 97 ffnd φ c A c Fn 1 K + 1
407 dffn5 c Fn 1 K + 1 c = k 1 K + 1 c k
408 407 biimpi c Fn 1 K + 1 c = k 1 K + 1 c k
409 406 408 syl φ c A c = k 1 K + 1 c k
410 409 eqcomd φ c A k 1 K + 1 c k = c
411 405 410 eqtrd φ c A k 1 K + 1 if k = K + 1 N + K - F c K if k = 1 F c 1 1 F c k - F c k 1 - 1 = c
412 37 411 eqtrd φ c A G F c = c
413 412 ralrimiva φ c A G F c = c
414 1 2 3 4 5 6 sticksstones12a φ d B F G d = d
415 8 9 413 414 2fvidf1od φ F : A 1-1 onto B