Metamath Proof Explorer


Theorem sticksstones12a

Description: Establish bijective mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 11-Oct-2024)

Ref Expression
Hypotheses sticksstones12a.1 φ N 0
sticksstones12a.2 φ K
sticksstones12a.3 F = a A j 1 K j + l = 1 j a l
sticksstones12a.4 G = b B if K = 0 1 N k 1 K + 1 if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1
sticksstones12a.5 A = g | g : 1 K + 1 0 i = 1 K + 1 g i = N
sticksstones12a.6 B = f | f : 1 K 1 N + K x 1 K y 1 K x < y f x < f y
Assertion sticksstones12a φ d B F G d = d

Proof

Step Hyp Ref Expression
1 sticksstones12a.1 φ N 0
2 sticksstones12a.2 φ K
3 sticksstones12a.3 F = a A j 1 K j + l = 1 j a l
4 sticksstones12a.4 G = b B if K = 0 1 N k 1 K + 1 if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1
5 sticksstones12a.5 A = g | g : 1 K + 1 0 i = 1 K + 1 g i = N
6 sticksstones12a.6 B = f | f : 1 K 1 N + K x 1 K y 1 K x < y f x < f y
7 4 a1i φ d B G = b B if K = 0 1 N k 1 K + 1 if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1
8 0red φ 0
9 2 nngt0d φ 0 < K
10 8 9 ltned φ 0 K
11 10 necomd φ K 0
12 11 neneqd φ ¬ K = 0
13 12 ad2antrr φ d B b = d ¬ K = 0
14 13 iffalsed φ d B b = d if K = 0 1 N k 1 K + 1 if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1 = k 1 K + 1 if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1
15 fveq1 b = d b K = d K
16 15 oveq2d b = d N + K - b K = N + K - d K
17 fveq1 b = d b 1 = d 1
18 17 oveq1d b = d b 1 1 = d 1 1
19 fveq1 b = d b k = d k
20 fveq1 b = d b k 1 = d k 1
21 19 20 oveq12d b = d b k b k 1 = d k d k 1
22 21 oveq1d b = d b k - b k 1 - 1 = d k - d k 1 - 1
23 18 22 ifeq12d b = d if k = 1 b 1 1 b k - b k 1 - 1 = if k = 1 d 1 1 d k - d k 1 - 1
24 16 23 ifeq12d b = d if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1 = if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
25 24 adantl φ d B b = d if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1 = if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
26 25 adantr φ d B b = d k 1 K + 1 if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1 = if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
27 26 mpteq2dva φ d B b = d k 1 K + 1 if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1 = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
28 14 27 eqtrd φ d B b = d if K = 0 1 N k 1 K + 1 if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1 = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
29 simpr φ d B d B
30 fzfid φ d B 1 K + 1 Fin
31 30 mptexd φ d B k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 V
32 7 28 29 31 fvmptd φ d B G d = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
33 32 fveq2d φ d B F G d = F k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
34 3 a1i φ d B F = a A j 1 K j + l = 1 j a l
35 simpll a = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 j 1 K l 1 j a = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
36 35 fveq1d a = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 j 1 K l 1 j a l = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 l
37 36 sumeq2dv a = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 j 1 K l = 1 j a l = l = 1 j k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 l
38 37 oveq2d a = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 j 1 K j + l = 1 j a l = j + l = 1 j k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 l
39 38 mpteq2dva a = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 j 1 K j + l = 1 j a l = j 1 K j + l = 1 j k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 l
40 39 adantl φ d B a = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 j 1 K j + l = 1 j a l = j 1 K j + l = 1 j k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 l
41 eleq1 N + K - d K = if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 N + K - d K 0 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 0
42 eleq1 if k = 1 d 1 1 d k - d k 1 - 1 = if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 if k = 1 d 1 1 d k - d k 1 - 1 0 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 0
43 6 eleq2i d B d f | f : 1 K 1 N + K x 1 K y 1 K x < y f x < f y
44 vex d V
45 feq1 f = d f : 1 K 1 N + K d : 1 K 1 N + K
46 fveq1 f = d f x = d x
47 fveq1 f = d f y = d y
48 46 47 breq12d f = d f x < f y d x < d y
49 48 imbi2d f = d x < y f x < f y x < y d x < d y
50 49 2ralbidv f = d x 1 K y 1 K x < y f x < f y x 1 K y 1 K x < y d x < d y
51 45 50 anbi12d f = d f : 1 K 1 N + K x 1 K y 1 K x < y f x < f y d : 1 K 1 N + K x 1 K y 1 K x < y d x < d y
52 44 51 elab d f | f : 1 K 1 N + K x 1 K y 1 K x < y f x < f y d : 1 K 1 N + K x 1 K y 1 K x < y d x < d y
53 43 52 bitri d B d : 1 K 1 N + K x 1 K y 1 K x < y d x < d y
54 53 biimpi d B d : 1 K 1 N + K x 1 K y 1 K x < y d x < d y
55 54 adantl φ d B d : 1 K 1 N + K x 1 K y 1 K x < y d x < d y
56 55 simpld φ d B d : 1 K 1 N + K
57 1zzd φ 1
58 57 adantr φ d B 1
59 2 nnnn0d φ K 0
60 59 nn0zd φ K
61 60 adantr φ d B K
62 2 nnge1d φ 1 K
63 62 adantr φ d B 1 K
64 2 nnred φ K
65 64 leidd φ K K
66 65 adantr φ d B K K
67 58 61 61 63 66 elfzd φ d B K 1 K
68 56 67 ffvelcdmd φ d B d K 1 N + K
69 elfzle2 d K 1 N + K d K N + K
70 68 69 syl φ d B d K N + K
71 70 adantr φ d B k 1 K + 1 d K N + K
72 71 adantr φ d B k 1 K + 1 k = K + 1 d K N + K
73 elfznn d K 1 N + K d K
74 73 nnnn0d d K 1 N + K d K 0
75 68 74 syl φ d B d K 0
76 75 adantr φ d B k 1 K + 1 d K 0
77 76 adantr φ d B k 1 K + 1 k = K + 1 d K 0
78 1 ad3antrrr φ d B k 1 K + 1 k = K + 1 N 0
79 59 ad3antrrr φ d B k 1 K + 1 k = K + 1 K 0
80 78 79 nn0addcld φ d B k 1 K + 1 k = K + 1 N + K 0
81 nn0sub d K 0 N + K 0 d K N + K N + K - d K 0
82 77 80 81 syl2anc φ d B k 1 K + 1 k = K + 1 d K N + K N + K - d K 0
83 72 82 mpbid φ d B k 1 K + 1 k = K + 1 N + K - d K 0
84 eleq1 d 1 1 = if k = 1 d 1 1 d k - d k 1 - 1 d 1 1 0 if k = 1 d 1 1 d k - d k 1 - 1 0
85 eleq1 d k - d k 1 - 1 = if k = 1 d 1 1 d k - d k 1 - 1 d k - d k 1 - 1 0 if k = 1 d 1 1 d k - d k 1 - 1 0
86 1le1 1 1
87 86 a1i φ d B 1 1
88 58 61 58 87 63 elfzd φ d B 1 1 K
89 56 88 ffvelcdmd φ d B d 1 1 N + K
90 elfznn d 1 1 N + K d 1
91 89 90 syl φ d B d 1
92 nnm1nn0 d 1 d 1 1 0
93 91 92 syl φ d B d 1 1 0
94 93 adantr φ d B k 1 K + 1 d 1 1 0
95 94 adantr φ d B k 1 K + 1 ¬ k = K + 1 d 1 1 0
96 95 adantr φ d B k 1 K + 1 ¬ k = K + 1 k = 1 d 1 1 0
97 56 ad3antrrr φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 d : 1 K 1 N + K
98 1zzd φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 1
99 61 ad3antrrr φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 K
100 elfznn k 1 K + 1 k
101 100 nnzd k 1 K + 1 k
102 101 ad3antlr φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k
103 elfzle1 k 1 K + 1 1 k
104 103 ad3antlr φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 1 k
105 neqne ¬ k = K + 1 k K + 1
106 105 adantl φ d B k 1 K + 1 ¬ k = K + 1 k K + 1
107 106 necomd φ d B k 1 K + 1 ¬ k = K + 1 K + 1 k
108 100 ad2antlr φ d B k 1 K + 1 ¬ k = K + 1 k
109 108 nnred φ d B k 1 K + 1 ¬ k = K + 1 k
110 64 ad3antrrr φ d B k 1 K + 1 ¬ k = K + 1 K
111 1red φ d B k 1 K + 1 ¬ k = K + 1 1
112 110 111 readdcld φ d B k 1 K + 1 ¬ k = K + 1 K + 1
113 elfzle2 k 1 K + 1 k K + 1
114 113 ad2antlr φ d B k 1 K + 1 ¬ k = K + 1 k K + 1
115 109 112 114 leltned φ d B k 1 K + 1 ¬ k = K + 1 k < K + 1 K + 1 k
116 107 115 mpbird φ d B k 1 K + 1 ¬ k = K + 1 k < K + 1
117 101 ad2antlr φ d B k 1 K + 1 ¬ k = K + 1 k
118 61 ad2antrr φ d B k 1 K + 1 ¬ k = K + 1 K
119 zleltp1 k K k K k < K + 1
120 117 118 119 syl2anc φ d B k 1 K + 1 ¬ k = K + 1 k K k < K + 1
121 116 120 mpbird φ d B k 1 K + 1 ¬ k = K + 1 k K
122 121 adantr φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k K
123 98 99 102 104 122 elfzd φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k 1 K
124 97 123 ffvelcdmd φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 d k 1 N + K
125 elfznn d k 1 N + K d k
126 125 nnzd d k 1 N + K d k
127 124 126 syl φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 d k
128 1zzd φ k 1 K + 1 ¬ k = 1 1
129 60 ad2antrr φ k 1 K + 1 ¬ k = 1 K
130 129 3impa φ k 1 K + 1 ¬ k = 1 K
131 101 adantl φ k 1 K + 1 k
132 131 adantr φ k 1 K + 1 ¬ k = 1 k
133 132 3impa φ k 1 K + 1 ¬ k = 1 k
134 133 128 zsubcld φ k 1 K + 1 ¬ k = 1 k 1
135 neqne ¬ k = 1 k 1
136 135 3ad2ant3 φ k 1 K + 1 ¬ k = 1 k 1
137 1red φ 1
138 137 3ad2ant1 φ k 1 K + 1 ¬ k = 1 1
139 133 zred φ k 1 K + 1 ¬ k = 1 k
140 simp2 φ k 1 K + 1 ¬ k = 1 k 1 K + 1
141 140 103 syl φ k 1 K + 1 ¬ k = 1 1 k
142 138 139 141 leltned φ k 1 K + 1 ¬ k = 1 1 < k k 1
143 136 142 mpbird φ k 1 K + 1 ¬ k = 1 1 < k
144 128 133 zltp1led φ k 1 K + 1 ¬ k = 1 1 < k 1 + 1 k
145 143 144 mpbid φ k 1 K + 1 ¬ k = 1 1 + 1 k
146 leaddsub 1 1 k 1 + 1 k 1 k 1
147 138 138 139 146 syl3anc φ k 1 K + 1 ¬ k = 1 1 + 1 k 1 k 1
148 145 147 mpbid φ k 1 K + 1 ¬ k = 1 1 k 1
149 134 zred φ k 1 K + 1 ¬ k = 1 k 1
150 64 3ad2ant1 φ k 1 K + 1 ¬ k = 1 K
151 1red φ k 1 K + 1 ¬ k = 1 1
152 150 151 readdcld φ k 1 K + 1 ¬ k = 1 K + 1
153 152 151 resubcld φ k 1 K + 1 ¬ k = 1 K + 1 - 1
154 113 3ad2ant2 φ k 1 K + 1 ¬ k = 1 k K + 1
155 139 152 151 154 lesub1dd φ k 1 K + 1 ¬ k = 1 k 1 K + 1 - 1
156 64 recnd φ K
157 156 3ad2ant1 φ k 1 K + 1 ¬ k = 1 K
158 1cnd φ k 1 K + 1 ¬ k = 1 1
159 157 158 pncand φ k 1 K + 1 ¬ k = 1 K + 1 - 1 = K
160 65 3ad2ant1 φ k 1 K + 1 ¬ k = 1 K K
161 159 160 eqbrtrd φ k 1 K + 1 ¬ k = 1 K + 1 - 1 K
162 149 153 150 155 161 letrd φ k 1 K + 1 ¬ k = 1 k 1 K
163 128 130 134 148 162 elfzd φ k 1 K + 1 ¬ k = 1 k 1 1 K
164 163 ad5ant135 φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k 1 1 K
165 97 164 ffvelcdmd φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 d k 1 1 N + K
166 elfznn d k 1 1 N + K d k 1
167 165 166 syl φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 d k 1
168 167 nnzd φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 d k 1
169 127 168 zsubcld φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 d k d k 1
170 169 98 zsubcld φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 d k - d k 1 - 1
171 108 adantr φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k
172 171 nnred φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k
173 172 ltm1d φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k 1 < k
174 164 123 jca φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k 1 1 K k 1 K
175 55 simprd φ d B x 1 K y 1 K x < y d x < d y
176 175 ad3antrrr φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 x 1 K y 1 K x < y d x < d y
177 breq1 x = k 1 x < y k 1 < y
178 fveq2 x = k 1 d x = d k 1
179 178 breq1d x = k 1 d x < d y d k 1 < d y
180 177 179 imbi12d x = k 1 x < y d x < d y k 1 < y d k 1 < d y
181 breq2 y = k k 1 < y k 1 < k
182 fveq2 y = k d y = d k
183 182 breq2d y = k d k 1 < d y d k 1 < d k
184 181 183 imbi12d y = k k 1 < y d k 1 < d y k 1 < k d k 1 < d k
185 180 184 rspc2va k 1 1 K k 1 K x 1 K y 1 K x < y d x < d y k 1 < k d k 1 < d k
186 174 176 185 syl2anc φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k 1 < k d k 1 < d k
187 173 186 mpd φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 d k 1 < d k
188 167 nnred φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 d k 1
189 127 zred φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 d k
190 188 189 posdifd φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 d k 1 < d k 0 < d k d k 1
191 187 190 mpbid φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 0 < d k d k 1
192 0zd φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 0
193 192 169 zltlem1d φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 0 < d k d k 1 0 d k - d k 1 - 1
194 191 193 mpbid φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 0 d k - d k 1 - 1
195 170 194 jca φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 d k - d k 1 - 1 0 d k - d k 1 - 1
196 elnn0z d k - d k 1 - 1 0 d k - d k 1 - 1 0 d k - d k 1 - 1
197 195 196 sylibr φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 d k - d k 1 - 1 0
198 84 85 96 197 ifbothda φ d B k 1 K + 1 ¬ k = K + 1 if k = 1 d 1 1 d k - d k 1 - 1 0
199 41 42 83 198 ifbothda φ d B k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 0
200 eqid k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
201 199 200 fmptd φ d B k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 : 1 K + 1 0
202 eqidd φ d B i 1 K + 1 k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
203 simpr φ d B i 1 K + 1 k = i k = i
204 203 eqeq1d φ d B i 1 K + 1 k = i k = K + 1 i = K + 1
205 203 eqeq1d φ d B i 1 K + 1 k = i k = 1 i = 1
206 203 fveq2d φ d B i 1 K + 1 k = i d k = d i
207 203 fvoveq1d φ d B i 1 K + 1 k = i d k 1 = d i 1
208 206 207 oveq12d φ d B i 1 K + 1 k = i d k d k 1 = d i d i 1
209 208 oveq1d φ d B i 1 K + 1 k = i d k - d k 1 - 1 = d i - d i 1 - 1
210 205 209 ifbieq2d φ d B i 1 K + 1 k = i if k = 1 d 1 1 d k - d k 1 - 1 = if i = 1 d 1 1 d i - d i 1 - 1
211 204 210 ifbieq2d φ d B i 1 K + 1 k = i if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 = if i = K + 1 N + K - d K if i = 1 d 1 1 d i - d i 1 - 1
212 simpr φ d B i 1 K + 1 i 1 K + 1
213 ovexd φ d B i 1 K + 1 N + K - d K V
214 ovexd φ d B i 1 K + 1 d 1 1 V
215 ovexd φ d B i 1 K + 1 d i - d i 1 - 1 V
216 214 215 ifcld φ d B i 1 K + 1 if i = 1 d 1 1 d i - d i 1 - 1 V
217 213 216 ifcld φ d B i 1 K + 1 if i = K + 1 N + K - d K if i = 1 d 1 1 d i - d i 1 - 1 V
218 202 211 212 217 fvmptd φ d B i 1 K + 1 k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 i = if i = K + 1 N + K - d K if i = 1 d 1 1 d i - d i 1 - 1
219 218 sumeq2dv φ d B i = 1 K + 1 k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 i = i = 1 K + 1 if i = K + 1 N + K - d K if i = 1 d 1 1 d i - d i 1 - 1
220 eqeq1 i = k i = K + 1 k = K + 1
221 eqeq1 i = k i = 1 k = 1
222 fveq2 i = k d i = d k
223 fvoveq1 i = k d i 1 = d k 1
224 222 223 oveq12d i = k d i d i 1 = d k d k 1
225 224 oveq1d i = k d i - d i 1 - 1 = d k - d k 1 - 1
226 221 225 ifbieq2d i = k if i = 1 d 1 1 d i - d i 1 - 1 = if k = 1 d 1 1 d k - d k 1 - 1
227 220 226 ifbieq2d i = k if i = K + 1 N + K - d K if i = 1 d 1 1 d i - d i 1 - 1 = if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
228 nfcv _ k if i = K + 1 N + K - d K if i = 1 d 1 1 d i - d i 1 - 1
229 nfcv _ i if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
230 227 228 229 cbvsum i = 1 K + 1 if i = K + 1 N + K - d K if i = 1 d 1 1 d i - d i 1 - 1 = k = 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
231 230 a1i φ d B i = 1 K + 1 if i = K + 1 N + K - d K if i = 1 d 1 1 d i - d i 1 - 1 = k = 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
232 eqid 1 = 1
233 1p0e1 1 + 0 = 1
234 232 233 eqtr4i 1 = 1 + 0
235 234 a1i φ 1 = 1 + 0
236 0le1 0 1
237 236 a1i φ 0 1
238 137 8 64 137 62 237 le2addd φ 1 + 0 K + 1
239 235 238 eqbrtrd φ 1 K + 1
240 60 peano2zd φ K + 1
241 eluz 1 K + 1 K + 1 1 1 K + 1
242 57 240 241 syl2anc φ K + 1 1 1 K + 1
243 239 242 mpbird φ K + 1 1
244 243 adantr φ d B K + 1 1
245 199 nn0cnd φ d B k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
246 eqeq1 k = K + 1 k = K + 1 K + 1 = K + 1
247 eqeq1 k = K + 1 k = 1 K + 1 = 1
248 fveq2 k = K + 1 d k = d K + 1
249 fvoveq1 k = K + 1 d k 1 = d K + 1 - 1
250 248 249 oveq12d k = K + 1 d k d k 1 = d K + 1 d K + 1 - 1
251 250 oveq1d k = K + 1 d k - d k 1 - 1 = d K + 1 - d K + 1 - 1 - 1
252 247 251 ifbieq2d k = K + 1 if k = 1 d 1 1 d k - d k 1 - 1 = if K + 1 = 1 d 1 1 d K + 1 - d K + 1 - 1 - 1
253 246 252 ifbieq2d k = K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 = if K + 1 = K + 1 N + K - d K if K + 1 = 1 d 1 1 d K + 1 - d K + 1 - 1 - 1
254 244 245 253 fsumm1 φ d B k = 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 = k = 1 K + 1 - 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 + if K + 1 = K + 1 N + K - d K if K + 1 = 1 d 1 1 d K + 1 - d K + 1 - 1 - 1
255 156 adantr φ d B K
256 1cnd φ d B 1
257 255 256 pncand φ d B K + 1 - 1 = K
258 257 oveq2d φ d B 1 K + 1 - 1 = 1 K
259 258 sumeq1d φ d B k = 1 K + 1 - 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 = k = 1 K if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
260 eqidd φ d B K + 1 = K + 1
261 260 iftrued φ d B if K + 1 = K + 1 N + K - d K if K + 1 = 1 d 1 1 d K + 1 - d K + 1 - 1 - 1 = N + K - d K
262 259 261 oveq12d φ d B k = 1 K + 1 - 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 + if K + 1 = K + 1 N + K - d K if K + 1 = 1 d 1 1 d K + 1 - d K + 1 - 1 - 1 = k = 1 K if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 + N + K - d K
263 elfzelz k 1 K k
264 263 adantl φ d B k 1 K k
265 264 zred φ d B k 1 K k
266 64 ad2antrr φ d B k 1 K K
267 1red φ d B k 1 K 1
268 266 267 readdcld φ d B k 1 K K + 1
269 elfzle2 k 1 K k K
270 269 adantl φ d B k 1 K k K
271 266 ltp1d φ d B k 1 K K < K + 1
272 265 266 268 270 271 lelttrd φ d B k 1 K k < K + 1
273 265 272 ltned φ d B k 1 K k K + 1
274 273 neneqd φ d B k 1 K ¬ k = K + 1
275 274 iffalsed φ d B k 1 K if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 = if k = 1 d 1 1 d k - d k 1 - 1
276 275 sumeq2dv φ d B k = 1 K if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 = k = 1 K if k = 1 d 1 1 d k - d k 1 - 1
277 eqeq1 d 1 1 = if k = 1 d 1 1 d k - d k 1 - 1 d 1 1 = if k = 1 d 1 d k d k 1 1 if k = 1 d 1 1 d k - d k 1 - 1 = if k = 1 d 1 d k d k 1 1
278 eqeq1 d k - d k 1 - 1 = if k = 1 d 1 1 d k - d k 1 - 1 d k - d k 1 - 1 = if k = 1 d 1 d k d k 1 1 if k = 1 d 1 1 d k - d k 1 - 1 = if k = 1 d 1 d k d k 1 1
279 simpr φ d B k 1 K k = 1 k = 1
280 279 iftrued φ d B k 1 K k = 1 if k = 1 d 1 d k d k 1 = d 1
281 280 eqcomd φ d B k 1 K k = 1 d 1 = if k = 1 d 1 d k d k 1
282 281 oveq1d φ d B k 1 K k = 1 d 1 1 = if k = 1 d 1 d k d k 1 1
283 simpr φ d B k 1 K ¬ k = 1 ¬ k = 1
284 283 iffalsed φ d B k 1 K ¬ k = 1 if k = 1 d 1 d k d k 1 = d k d k 1
285 284 eqcomd φ d B k 1 K ¬ k = 1 d k d k 1 = if k = 1 d 1 d k d k 1
286 285 oveq1d φ d B k 1 K ¬ k = 1 d k - d k 1 - 1 = if k = 1 d 1 d k d k 1 1
287 277 278 282 286 ifbothda φ d B k 1 K if k = 1 d 1 1 d k - d k 1 - 1 = if k = 1 d 1 d k d k 1 1
288 287 sumeq2dv φ d B k = 1 K if k = 1 d 1 1 d k - d k 1 - 1 = k = 1 K if k = 1 d 1 d k d k 1 1
289 fzfid φ d B 1 K Fin
290 eleq1 d 1 = if k = 1 d 1 d k d k 1 d 1 if k = 1 d 1 d k d k 1
291 eleq1 d k d k 1 = if k = 1 d 1 d k d k 1 d k d k 1 if k = 1 d 1 d k d k 1
292 56 3adant3 φ d B k 1 K d : 1 K 1 N + K
293 88 3adant3 φ d B k 1 K 1 1 K
294 292 293 ffvelcdmd φ d B k 1 K d 1 1 N + K
295 90 nnzd d 1 1 N + K d 1
296 294 295 syl φ d B k 1 K d 1
297 296 adantr φ d B k 1 K k = 1 d 1
298 simp3 φ d B k 1 K k 1 K
299 292 298 ffvelcdmd φ d B k 1 K d k 1 N + K
300 299 126 syl φ d B k 1 K d k
301 300 adantr φ d B k 1 K ¬ k = 1 d k
302 292 adantr φ d B k 1 K ¬ k = 1 d : 1 K 1 N + K
303 1zzd φ d B k 1 K ¬ k = 1 1
304 61 3adant3 φ d B k 1 K K
305 304 adantr φ d B k 1 K ¬ k = 1 K
306 264 3impa φ d B k 1 K k
307 306 adantr φ d B k 1 K ¬ k = 1 k
308 307 303 zsubcld φ d B k 1 K ¬ k = 1 k 1
309 elfzle1 k 1 K 1 k
310 298 309 syl φ d B k 1 K 1 k
311 310 adantr φ d B k 1 K ¬ k = 1 1 k
312 135 adantl φ d B k 1 K ¬ k = 1 k 1
313 311 312 jca φ d B k 1 K ¬ k = 1 1 k k 1
314 1red φ d B k 1 K ¬ k = 1 1
315 307 zred φ d B k 1 K ¬ k = 1 k
316 314 315 ltlend φ d B k 1 K ¬ k = 1 1 < k 1 k k 1
317 313 316 mpbird φ d B k 1 K ¬ k = 1 1 < k
318 303 307 zltlem1d φ d B k 1 K ¬ k = 1 1 < k 1 k 1
319 317 318 mpbid φ d B k 1 K ¬ k = 1 1 k 1
320 308 zred φ d B k 1 K ¬ k = 1 k 1
321 305 zred φ d B k 1 K ¬ k = 1 K
322 315 lem1d φ d B k 1 K ¬ k = 1 k 1 k
323 298 269 syl φ d B k 1 K k K
324 323 adantr φ d B k 1 K ¬ k = 1 k K
325 320 315 321 322 324 letrd φ d B k 1 K ¬ k = 1 k 1 K
326 303 305 308 319 325 elfzd φ d B k 1 K ¬ k = 1 k 1 1 K
327 302 326 ffvelcdmd φ d B k 1 K ¬ k = 1 d k 1 1 N + K
328 327 166 syl φ d B k 1 K ¬ k = 1 d k 1
329 328 nnzd φ d B k 1 K ¬ k = 1 d k 1
330 301 329 zsubcld φ d B k 1 K ¬ k = 1 d k d k 1
331 290 291 297 330 ifbothda φ d B k 1 K if k = 1 d 1 d k d k 1
332 331 3expa φ d B k 1 K if k = 1 d 1 d k d k 1
333 332 zcnd φ d B k 1 K if k = 1 d 1 d k d k 1
334 256 adantr φ d B k 1 K 1
335 289 333 334 fsumsub φ d B k = 1 K if k = 1 d 1 d k d k 1 1 = k = 1 K if k = 1 d 1 d k d k 1 k = 1 K 1
336 simpr φ d B 1 = K 1 = K
337 336 oveq2d φ d B 1 = K 1 1 = 1 K
338 337 eqcomd φ d B 1 = K 1 K = 1 1
339 338 sumeq1d φ d B 1 = K k = 1 K if k = 1 d 1 d k d k 1 = k = 1 1 if k = 1 d 1 d k d k 1
340 1zzd φ d B 1
341 232 a1i φ d B 1 = 1
342 341 iftrued φ d B if 1 = 1 d 1 d 1 d 1 1 = d 1
343 91 nncnd φ d B d 1
344 342 343 eqeltrd φ d B if 1 = 1 d 1 d 1 d 1 1
345 eqeq1 k = 1 k = 1 1 = 1
346 fveq2 k = 1 d k = d 1
347 fvoveq1 k = 1 d k 1 = d 1 1
348 346 347 oveq12d k = 1 d k d k 1 = d 1 d 1 1
349 345 348 ifbieq2d k = 1 if k = 1 d 1 d k d k 1 = if 1 = 1 d 1 d 1 d 1 1
350 349 fsum1 1 if 1 = 1 d 1 d 1 d 1 1 k = 1 1 if k = 1 d 1 d k d k 1 = if 1 = 1 d 1 d 1 d 1 1
351 340 344 350 syl2anc φ d B k = 1 1 if k = 1 d 1 d k d k 1 = if 1 = 1 d 1 d 1 d 1 1
352 351 342 eqtrd φ d B k = 1 1 if k = 1 d 1 d k d k 1 = d 1
353 352 adantr φ d B 1 = K k = 1 1 if k = 1 d 1 d k d k 1 = d 1
354 fveq2 1 = K d 1 = d K
355 354 adantl φ d B 1 = K d 1 = d K
356 339 353 355 3eqtrd φ d B 1 = K k = 1 K if k = 1 d 1 d k d k 1 = d K
357 2 3ad2ant1 φ d B 1 < K K
358 nnuz = 1
359 358 a1i φ d B 1 < K = 1
360 357 359 eleqtrd φ d B 1 < K K 1
361 333 3adantl3 φ d B 1 < K k 1 K if k = 1 d 1 d k d k 1
362 iftrue k = 1 if k = 1 d 1 d k d k 1 = d 1
363 360 361 362 fsum1p φ d B 1 < K k = 1 K if k = 1 d 1 d k d k 1 = d 1 + k = 1 + 1 K if k = 1 d 1 d k d k 1
364 1red φ d B 1 < K k 1 + 1 K 1
365 elfzle1 k 1 + 1 K 1 + 1 k
366 365 adantl φ d B 1 < K k 1 + 1 K 1 + 1 k
367 1zzd φ d B 1 < K k 1 + 1 K 1
368 elfzelz k 1 + 1 K k
369 368 adantl φ d B 1 < K k 1 + 1 K k
370 367 369 zltp1led φ d B 1 < K k 1 + 1 K 1 < k 1 + 1 k
371 366 370 mpbird φ d B 1 < K k 1 + 1 K 1 < k
372 364 371 ltned φ d B 1 < K k 1 + 1 K 1 k
373 372 necomd φ d B 1 < K k 1 + 1 K k 1
374 373 neneqd φ d B 1 < K k 1 + 1 K ¬ k = 1
375 374 iffalsed φ d B 1 < K k 1 + 1 K if k = 1 d 1 d k d k 1 = d k d k 1
376 375 sumeq2dv φ d B 1 < K k = 1 + 1 K if k = 1 d 1 d k d k 1 = k = 1 + 1 K d k d k 1
377 376 oveq2d φ d B 1 < K d 1 + k = 1 + 1 K if k = 1 d 1 d k d k 1 = d 1 + k = 1 + 1 K d k d k 1
378 255 3adant3 φ d B 1 < K K
379 1cnd φ d B 1 < K 1
380 378 379 npcand φ d B 1 < K K - 1 + 1 = K
381 380 eqcomd φ d B 1 < K K = K - 1 + 1
382 381 oveq2d φ d B 1 < K 1 + 1 K = 1 + 1 K - 1 + 1
383 382 sumeq1d φ d B 1 < K k = 1 + 1 K d k d k 1 = k = 1 + 1 K - 1 + 1 d k d k 1
384 383 oveq2d φ d B 1 < K d 1 + k = 1 + 1 K d k d k 1 = d 1 + k = 1 + 1 K - 1 + 1 d k d k 1
385 elfzelz k 1 + 1 K - 1 + 1 k
386 385 adantl φ d B 1 < K k 1 + 1 K - 1 + 1 k
387 386 zcnd φ d B 1 < K k 1 + 1 K - 1 + 1 k
388 1cnd φ d B 1 < K k 1 + 1 K - 1 + 1 1
389 387 388 npcand φ d B 1 < K k 1 + 1 K - 1 + 1 k - 1 + 1 = k
390 389 eqcomd φ d B 1 < K k 1 + 1 K - 1 + 1 k = k - 1 + 1
391 390 fveq2d φ d B 1 < K k 1 + 1 K - 1 + 1 d k = d k - 1 + 1
392 391 oveq1d φ d B 1 < K k 1 + 1 K - 1 + 1 d k d k 1 = d k - 1 + 1 d k 1
393 392 sumeq2dv φ d B 1 < K k = 1 + 1 K - 1 + 1 d k d k 1 = k = 1 + 1 K - 1 + 1 d k - 1 + 1 d k 1
394 393 oveq2d φ d B 1 < K d 1 + k = 1 + 1 K - 1 + 1 d k d k 1 = d 1 + k = 1 + 1 K - 1 + 1 d k - 1 + 1 d k 1
395 58 3adant3 φ d B 1 < K 1
396 61 3adant3 φ d B 1 < K K
397 396 395 zsubcld φ d B 1 < K K 1
398 56 3adant3 φ d B 1 < K d : 1 K 1 N + K
399 398 adantr φ d B 1 < K s 1 K 1 d : 1 K 1 N + K
400 1zzd φ d B 1 < K s 1 K 1 1
401 396 adantr φ d B 1 < K s 1 K 1 K
402 elfznn s 1 K 1 s
403 402 adantl φ d B 1 < K s 1 K 1 s
404 403 nnzd φ d B 1 < K s 1 K 1 s
405 404 peano2zd φ d B 1 < K s 1 K 1 s + 1
406 1red φ d B 1 < K s 1 K 1 1
407 403 nnred φ d B 1 < K s 1 K 1 s
408 405 zred φ d B 1 < K s 1 K 1 s + 1
409 403 nnge1d φ d B 1 < K s 1 K 1 1 s
410 407 lep1d φ d B 1 < K s 1 K 1 s s + 1
411 406 407 408 409 410 letrd φ d B 1 < K s 1 K 1 1 s + 1
412 elfzle2 s 1 K 1 s K 1
413 412 adantl φ d B 1 < K s 1 K 1 s K 1
414 401 zred φ d B 1 < K s 1 K 1 K
415 leaddsub s 1 K s + 1 K s K 1
416 407 406 414 415 syl3anc φ d B 1 < K s 1 K 1 s + 1 K s K 1
417 413 416 mpbird φ d B 1 < K s 1 K 1 s + 1 K
418 400 401 405 411 417 elfzd φ d B 1 < K s 1 K 1 s + 1 1 K
419 399 418 ffvelcdmd φ d B 1 < K s 1 K 1 d s + 1 1 N + K
420 elfznn d s + 1 1 N + K d s + 1
421 419 420 syl φ d B 1 < K s 1 K 1 d s + 1
422 421 nnzd φ d B 1 < K s 1 K 1 d s + 1
423 414 406 resubcld φ d B 1 < K s 1 K 1 K 1
424 414 lem1d φ d B 1 < K s 1 K 1 K 1 K
425 407 423 414 413 424 letrd φ d B 1 < K s 1 K 1 s K
426 400 401 404 409 425 elfzd φ d B 1 < K s 1 K 1 s 1 K
427 399 ffvelcdmda φ d B 1 < K s 1 K 1 s 1 K d s 1 N + K
428 426 427 mpdan φ d B 1 < K s 1 K 1 d s 1 N + K
429 elfznn d s 1 N + K d s
430 428 429 syl φ d B 1 < K s 1 K 1 d s
431 430 nnzd φ d B 1 < K s 1 K 1 d s
432 422 431 zsubcld φ d B 1 < K s 1 K 1 d s + 1 d s
433 432 zcnd φ d B 1 < K s 1 K 1 d s + 1 d s
434 fvoveq1 s = k 1 d s + 1 = d k - 1 + 1
435 fveq2 s = k 1 d s = d k 1
436 434 435 oveq12d s = k 1 d s + 1 d s = d k - 1 + 1 d k 1
437 395 395 397 433 436 fsumshft φ d B 1 < K s = 1 K 1 d s + 1 d s = k = 1 + 1 K - 1 + 1 d k - 1 + 1 d k 1
438 437 eqcomd φ d B 1 < K k = 1 + 1 K - 1 + 1 d k - 1 + 1 d k 1 = s = 1 K 1 d s + 1 d s
439 438 oveq2d φ d B 1 < K d 1 + k = 1 + 1 K - 1 + 1 d k - 1 + 1 d k 1 = d 1 + s = 1 K 1 d s + 1 d s
440 fveq2 o = s d o = d s
441 fveq2 o = s + 1 d o = d s + 1
442 fveq2 o = 1 d o = d 1
443 fveq2 o = K - 1 + 1 d o = d K - 1 + 1
444 380 360 eqeltrd φ d B 1 < K K - 1 + 1 1
445 56 adantr φ d B 1 < K d : 1 K 1 N + K
446 445 3impa φ d B 1 < K d : 1 K 1 N + K
447 446 ffvelcdmda φ d B 1 < K o 1 K d o 1 N + K
448 447 ex φ d B 1 < K o 1 K d o 1 N + K
449 380 oveq2d φ d B 1 < K 1 K - 1 + 1 = 1 K
450 449 eleq2d φ d B 1 < K o 1 K - 1 + 1 o 1 K
451 450 imbi1d φ d B 1 < K o 1 K - 1 + 1 d o 1 N + K o 1 K d o 1 N + K
452 448 451 mpbird φ d B 1 < K o 1 K - 1 + 1 d o 1 N + K
453 452 imp φ d B 1 < K o 1 K - 1 + 1 d o 1 N + K
454 elfznn d o 1 N + K d o
455 453 454 syl φ d B 1 < K o 1 K - 1 + 1 d o
456 455 nncnd φ d B 1 < K o 1 K - 1 + 1 d o
457 440 441 442 443 397 444 456 telfsum2 φ d B 1 < K s = 1 K 1 d s + 1 d s = d K - 1 + 1 d 1
458 457 oveq2d φ d B 1 < K d 1 + s = 1 K 1 d s + 1 d s = d 1 + d K - 1 + 1 - d 1
459 380 fveq2d φ d B 1 < K d K - 1 + 1 = d K
460 459 oveq1d φ d B 1 < K d K - 1 + 1 d 1 = d K d 1
461 460 oveq2d φ d B 1 < K d 1 + d K - 1 + 1 - d 1 = d 1 + d K - d 1
462 343 3adant3 φ d B 1 < K d 1
463 68 73 syl φ d B d K
464 463 nncnd φ d B d K
465 464 3adant3 φ d B 1 < K d K
466 462 465 pncan3d φ d B 1 < K d 1 + d K - d 1 = d K
467 eqidd φ d B 1 < K d K = d K
468 466 467 eqtrd φ d B 1 < K d 1 + d K - d 1 = d K
469 461 468 eqtrd φ d B 1 < K d 1 + d K - 1 + 1 - d 1 = d K
470 458 469 eqtrd φ d B 1 < K d 1 + s = 1 K 1 d s + 1 d s = d K
471 439 470 eqtrd φ d B 1 < K d 1 + k = 1 + 1 K - 1 + 1 d k - 1 + 1 d k 1 = d K
472 394 471 eqtrd φ d B 1 < K d 1 + k = 1 + 1 K - 1 + 1 d k d k 1 = d K
473 384 472 eqtrd φ d B 1 < K d 1 + k = 1 + 1 K d k d k 1 = d K
474 377 473 eqtrd φ d B 1 < K d 1 + k = 1 + 1 K if k = 1 d 1 d k d k 1 = d K
475 363 474 eqtrd φ d B 1 < K k = 1 K if k = 1 d 1 d k d k 1 = d K
476 475 3expa φ d B 1 < K k = 1 K if k = 1 d 1 d k d k 1 = d K
477 137 adantr φ d B 1
478 64 adantr φ d B K
479 477 478 leloed φ d B 1 K 1 < K 1 = K
480 63 479 mpbid φ d B 1 < K 1 = K
481 480 orcomd φ d B 1 = K 1 < K
482 356 476 481 mpjaodan φ d B k = 1 K if k = 1 d 1 d k d k 1 = d K
483 fsumconst 1 K Fin 1 k = 1 K 1 = 1 K 1
484 289 256 483 syl2anc φ d B k = 1 K 1 = 1 K 1
485 59 adantr φ d B K 0
486 hashfz1 K 0 1 K = K
487 485 486 syl φ d B 1 K = K
488 487 oveq1d φ d B 1 K 1 = K 1
489 255 mulridd φ d B K 1 = K
490 488 489 eqtrd φ d B 1 K 1 = K
491 484 490 eqtrd φ d B k = 1 K 1 = K
492 482 491 oveq12d φ d B k = 1 K if k = 1 d 1 d k d k 1 k = 1 K 1 = d K K
493 335 492 eqtrd φ d B k = 1 K if k = 1 d 1 d k d k 1 1 = d K K
494 288 493 eqtrd φ d B k = 1 K if k = 1 d 1 1 d k - d k 1 - 1 = d K K
495 464 255 subcld φ d B d K K
496 495 addridd φ d B d K - K + 0 = d K K
497 496 eqcomd φ d B d K K = d K - K + 0
498 0cnd φ d B 0
499 495 498 addcomd φ d B d K - K + 0 = 0 + d K - K
500 497 499 eqtrd φ d B d K K = 0 + d K - K
501 494 500 eqtrd φ d B k = 1 K if k = 1 d 1 1 d k - d k 1 - 1 = 0 + d K - K
502 498 255 464 subsub2d φ d B 0 K d K = 0 + d K - K
503 502 eqcomd φ d B 0 + d K - K = 0 K d K
504 501 503 eqtrd φ d B k = 1 K if k = 1 d 1 1 d k - d k 1 - 1 = 0 K d K
505 1 nn0cnd φ N
506 505 adantr φ d B N
507 506 subidd φ d B N N = 0
508 507 eqcomd φ d B 0 = N N
509 508 oveq1d φ d B 0 K d K = N - N - K d K
510 504 509 eqtrd φ d B k = 1 K if k = 1 d 1 1 d k - d k 1 - 1 = N - N - K d K
511 255 464 subcld φ d B K d K
512 506 506 511 subsub4d φ d B N - N - K d K = N N + K - d K
513 510 512 eqtrd φ d B k = 1 K if k = 1 d 1 1 d k - d k 1 - 1 = N N + K - d K
514 506 255 464 addsubassd φ d B N + K - d K = N + K - d K
515 514 eqcomd φ d B N + K - d K = N + K - d K
516 515 oveq2d φ d B N N + K - d K = N N + K - d K
517 513 516 eqtrd φ d B k = 1 K if k = 1 d 1 1 d k - d k 1 - 1 = N N + K - d K
518 276 517 eqtrd φ d B k = 1 K if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 = N N + K - d K
519 eleq1 d 1 1 = if k = 1 d 1 1 d k - d k 1 - 1 d 1 1 if k = 1 d 1 1 d k - d k 1 - 1
520 eleq1 d k - d k 1 - 1 = if k = 1 d 1 1 d k - d k 1 - 1 d k - d k 1 - 1 if k = 1 d 1 1 d k - d k 1 - 1
521 1zzd φ d B k 1 K 1
522 296 521 zsubcld φ d B k 1 K d 1 1
523 522 adantr φ d B k 1 K k = 1 d 1 1
524 521 adantr φ d B k 1 K ¬ k = 1 1
525 330 524 zsubcld φ d B k 1 K ¬ k = 1 d k - d k 1 - 1
526 519 520 523 525 ifbothda φ d B k 1 K if k = 1 d 1 1 d k - d k 1 - 1
527 526 3expa φ d B k 1 K if k = 1 d 1 1 d k - d k 1 - 1
528 275 eleq1d φ d B k 1 K if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 if k = 1 d 1 1 d k - d k 1 - 1
529 527 528 mpbird φ d B k 1 K if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
530 289 529 fsumzcl φ d B k = 1 K if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
531 530 zcnd φ d B k = 1 K if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
532 506 255 addcld φ d B N + K
533 532 464 subcld φ d B N + K - d K
534 531 533 506 addlsub φ d B k = 1 K if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 + N + K - d K = N k = 1 K if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 = N N + K - d K
535 518 534 mpbird φ d B k = 1 K if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 + N + K - d K = N
536 eqidd φ d B N = N
537 535 536 eqtrd φ d B k = 1 K if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 + N + K - d K = N
538 262 537 eqtrd φ d B k = 1 K + 1 - 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 + if K + 1 = K + 1 N + K - d K if K + 1 = 1 d 1 1 d K + 1 - d K + 1 - 1 - 1 = N
539 254 538 eqtrd φ d B k = 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 = N
540 231 539 eqtrd φ d B i = 1 K + 1 if i = K + 1 N + K - d K if i = 1 d 1 1 d i - d i 1 - 1 = N
541 219 540 eqtrd φ d B i = 1 K + 1 k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 i = N
542 201 541 jca φ d B k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 : 1 K + 1 0 i = 1 K + 1 k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 i = N
543 ovex 1 K + 1 V
544 543 mptex k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 V
545 feq1 g = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 g : 1 K + 1 0 k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 : 1 K + 1 0
546 simpl g = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 i 1 K + 1 g = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
547 546 fveq1d g = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 i 1 K + 1 g i = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 i
548 547 sumeq2dv g = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 i = 1 K + 1 g i = i = 1 K + 1 k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 i
549 548 eqeq1d g = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 i = 1 K + 1 g i = N i = 1 K + 1 k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 i = N
550 545 549 anbi12d g = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 g : 1 K + 1 0 i = 1 K + 1 g i = N k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 : 1 K + 1 0 i = 1 K + 1 k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 i = N
551 544 550 elab k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 g | g : 1 K + 1 0 i = 1 K + 1 g i = N k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 : 1 K + 1 0 i = 1 K + 1 k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 i = N
552 551 a1i φ d B k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 g | g : 1 K + 1 0 i = 1 K + 1 g i = N k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 : 1 K + 1 0 i = 1 K + 1 k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 i = N
553 542 552 mpbird φ d B k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 g | g : 1 K + 1 0 i = 1 K + 1 g i = N
554 5 a1i φ d B A = g | g : 1 K + 1 0 i = 1 K + 1 g i = N
555 554 eqcomd φ d B g | g : 1 K + 1 0 i = 1 K + 1 g i = N = A
556 553 555 eleqtrd φ d B k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 A
557 289 mptexd φ d B j 1 K j + l = 1 j k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 l V
558 34 40 556 557 fvmptd φ d B F k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 = j 1 K j + l = 1 j k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 l
559 eqidd φ d B j 1 K l 1 j k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
560 simpr φ d B j 1 K l 1 j k = l k = l
561 560 eqeq1d φ d B j 1 K l 1 j k = l k = K + 1 l = K + 1
562 560 eqeq1d φ d B j 1 K l 1 j k = l k = 1 l = 1
563 560 fveq2d φ d B j 1 K l 1 j k = l d k = d l
564 560 oveq1d φ d B j 1 K l 1 j k = l k 1 = l 1
565 564 fveq2d φ d B j 1 K l 1 j k = l d k 1 = d l 1
566 563 565 oveq12d φ d B j 1 K l 1 j k = l d k d k 1 = d l d l 1
567 566 oveq1d φ d B j 1 K l 1 j k = l d k - d k 1 - 1 = d l - d l 1 - 1
568 562 567 ifbieq2d φ d B j 1 K l 1 j k = l if k = 1 d 1 1 d k - d k 1 - 1 = if l = 1 d 1 1 d l - d l 1 - 1
569 561 568 ifbieq2d φ d B j 1 K l 1 j k = l if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 = if l = K + 1 N + K - d K if l = 1 d 1 1 d l - d l 1 - 1
570 1zzd φ d B j 1 K l 1 j 1
571 60 3ad2ant1 φ d B j 1 K K
572 571 adantr φ d B j 1 K l 1 j K
573 572 peano2zd φ d B j 1 K l 1 j K + 1
574 elfzelz l 1 j l
575 574 adantl φ d B j 1 K l 1 j l
576 elfzle1 l 1 j 1 l
577 576 adantl φ d B j 1 K l 1 j 1 l
578 575 zred φ d B j 1 K l 1 j l
579 simp3 φ d B j 1 K j 1 K
580 elfznn j 1 K j
581 579 580 syl φ d B j 1 K j
582 581 nnred φ d B j 1 K j
583 582 adantr φ d B j 1 K l 1 j j
584 573 zred φ d B j 1 K l 1 j K + 1
585 elfzle2 l 1 j l j
586 585 adantl φ d B j 1 K l 1 j l j
587 64 3ad2ant1 φ d B j 1 K K
588 1red φ d B j 1 K 1
589 587 588 readdcld φ d B j 1 K K + 1
590 elfzle2 j 1 K j K
591 579 590 syl φ d B j 1 K j K
592 587 lep1d φ d B j 1 K K K + 1
593 582 587 589 591 592 letrd φ d B j 1 K j K + 1
594 593 adantr φ d B j 1 K l 1 j j K + 1
595 578 583 584 586 594 letrd φ d B j 1 K l 1 j l K + 1
596 570 573 575 577 595 elfzd φ d B j 1 K l 1 j l 1 K + 1
597 ovexd φ d B j 1 K l 1 j N + K - d K V
598 ovexd φ d B j 1 K l 1 j d 1 1 V
599 ovexd φ d B j 1 K l 1 j d l - d l 1 - 1 V
600 598 599 ifcld φ d B j 1 K l 1 j if l = 1 d 1 1 d l - d l 1 - 1 V
601 597 600 ifcld φ d B j 1 K l 1 j if l = K + 1 N + K - d K if l = 1 d 1 1 d l - d l 1 - 1 V
602 559 569 596 601 fvmptd φ d B j 1 K l 1 j k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 l = if l = K + 1 N + K - d K if l = 1 d 1 1 d l - d l 1 - 1
603 602 sumeq2dv φ d B j 1 K l = 1 j k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 l = l = 1 j if l = K + 1 N + K - d K if l = 1 d 1 1 d l - d l 1 - 1
604 603 oveq2d φ d B j 1 K j + l = 1 j k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 l = j + l = 1 j if l = K + 1 N + K - d K if l = 1 d 1 1 d l - d l 1 - 1
605 elfznn l 1 j l
606 605 adantl φ d B j 1 K l 1 j l
607 606 nnred φ d B j 1 K l 1 j l
608 587 adantr φ d B j 1 K l 1 j K
609 1red φ d B j 1 K l 1 j 1
610 608 609 readdcld φ d B j 1 K l 1 j K + 1
611 581 adantr φ d B j 1 K l 1 j j
612 611 nnred φ d B j 1 K l 1 j j
613 591 adantr φ d B j 1 K l 1 j j K
614 607 612 608 586 613 letrd φ d B j 1 K l 1 j l K
615 608 ltp1d φ d B j 1 K l 1 j K < K + 1
616 607 608 610 614 615 lelttrd φ d B j 1 K l 1 j l < K + 1
617 607 616 ltned φ d B j 1 K l 1 j l K + 1
618 617 neneqd φ d B j 1 K l 1 j ¬ l = K + 1
619 618 iffalsed φ d B j 1 K l 1 j if l = K + 1 N + K - d K if l = 1 d 1 1 d l - d l 1 - 1 = if l = 1 d 1 1 d l - d l 1 - 1
620 619 sumeq2dv φ d B j 1 K l = 1 j if l = K + 1 N + K - d K if l = 1 d 1 1 d l - d l 1 - 1 = l = 1 j if l = 1 d 1 1 d l - d l 1 - 1
621 620 oveq2d φ d B j 1 K j + l = 1 j if l = K + 1 N + K - d K if l = 1 d 1 1 d l - d l 1 - 1 = j + l = 1 j if l = 1 d 1 1 d l - d l 1 - 1
622 581 nnge1d φ d B j 1 K 1 j
623 57 3ad2ant1 φ d B j 1 K 1
624 581 nnzd φ d B j 1 K j
625 eluz 1 j j 1 1 j
626 623 624 625 syl2anc φ d B j 1 K j 1 1 j
627 622 626 mpbird φ d B j 1 K j 1
628 eleq1 d 1 1 = if l = 1 d 1 1 d l - d l 1 - 1 d 1 1 if l = 1 d 1 1 d l - d l 1 - 1
629 eleq1 d l - d l 1 - 1 = if l = 1 d 1 1 d l - d l 1 - 1 d l - d l 1 - 1 if l = 1 d 1 1 d l - d l 1 - 1
630 56 3adant3 φ d B j 1 K d : 1 K 1 N + K
631 simp1 φ d B j 1 K φ
632 631 62 syl φ d B j 1 K 1 K
633 631 60 syl φ d B j 1 K K
634 eluz 1 K K 1 1 K
635 623 633 634 syl2anc φ d B j 1 K K 1 1 K
636 632 635 mpbird φ d B j 1 K K 1
637 eluzfz1 K 1 1 1 K
638 636 637 syl φ d B j 1 K 1 1 K
639 630 638 ffvelcdmd φ d B j 1 K d 1 1 N + K
640 639 90 syl φ d B j 1 K d 1
641 640 nnzd φ d B j 1 K d 1
642 641 623 zsubcld φ d B j 1 K d 1 1
643 642 zcnd φ d B j 1 K d 1 1
644 643 adantr φ d B j 1 K l 1 j d 1 1
645 644 adantr φ d B j 1 K l 1 j l = 1 d 1 1
646 630 adantr φ d B j 1 K l 1 j d : 1 K 1 N + K
647 633 adantr φ d B j 1 K l 1 j K
648 606 nnzd φ d B j 1 K l 1 j l
649 606 nnge1d φ d B j 1 K l 1 j 1 l
650 570 647 648 649 614 elfzd φ d B j 1 K l 1 j l 1 K
651 646 650 ffvelcdmd φ d B j 1 K l 1 j d l 1 N + K
652 elfzelz d l 1 N + K d l
653 651 652 syl φ d B j 1 K l 1 j d l
654 653 adantr φ d B j 1 K l 1 j ¬ l = 1 d l
655 646 adantr φ d B j 1 K l 1 j ¬ l = 1 d : 1 K 1 N + K
656 1zzd φ d B j 1 K l 1 j ¬ l = 1 1
657 647 adantr φ d B j 1 K l 1 j ¬ l = 1 K
658 648 adantr φ d B j 1 K l 1 j ¬ l = 1 l
659 658 656 zsubcld φ d B j 1 K l 1 j ¬ l = 1 l 1
660 neqne ¬ l = 1 l 1
661 660 adantl φ d B j 1 K l 1 j ¬ l = 1 l 1
662 609 adantr φ d B j 1 K l 1 j ¬ l = 1 1
663 607 adantr φ d B j 1 K l 1 j ¬ l = 1 l
664 649 adantr φ d B j 1 K l 1 j ¬ l = 1 1 l
665 662 663 664 leltned φ d B j 1 K l 1 j ¬ l = 1 1 < l l 1
666 661 665 mpbird φ d B j 1 K l 1 j ¬ l = 1 1 < l
667 656 658 zltlem1d φ d B j 1 K l 1 j ¬ l = 1 1 < l 1 l 1
668 666 667 mpbid φ d B j 1 K l 1 j ¬ l = 1 1 l 1
669 659 zred φ d B j 1 K l 1 j ¬ l = 1 l 1
670 608 adantr φ d B j 1 K l 1 j ¬ l = 1 K
671 663 lem1d φ d B j 1 K l 1 j ¬ l = 1 l 1 l
672 614 adantr φ d B j 1 K l 1 j ¬ l = 1 l K
673 669 663 670 671 672 letrd φ d B j 1 K l 1 j ¬ l = 1 l 1 K
674 656 657 659 668 673 elfzd φ d B j 1 K l 1 j ¬ l = 1 l 1 1 K
675 655 674 ffvelcdmd φ d B j 1 K l 1 j ¬ l = 1 d l 1 1 N + K
676 elfzelz d l 1 1 N + K d l 1
677 675 676 syl φ d B j 1 K l 1 j ¬ l = 1 d l 1
678 654 677 zsubcld φ d B j 1 K l 1 j ¬ l = 1 d l d l 1
679 678 656 zsubcld φ d B j 1 K l 1 j ¬ l = 1 d l - d l 1 - 1
680 679 zcnd φ d B j 1 K l 1 j ¬ l = 1 d l - d l 1 - 1
681 628 629 645 680 ifbothda φ d B j 1 K l 1 j if l = 1 d 1 1 d l - d l 1 - 1
682 iftrue l = 1 if l = 1 d 1 1 d l - d l 1 - 1 = d 1 1
683 627 681 682 fsum1p φ d B j 1 K l = 1 j if l = 1 d 1 1 d l - d l 1 - 1 = d 1 - 1 + l = 1 + 1 j if l = 1 d 1 1 d l - d l 1 - 1
684 683 oveq2d φ d B j 1 K j + l = 1 j if l = 1 d 1 1 d l - d l 1 - 1 = j + d 1 1 + l = 1 + 1 j if l = 1 d 1 1 d l - d l 1 - 1
685 631 137 syl φ d B j 1 K 1
686 685 adantr φ d B j 1 K l 1 + 1 j 1
687 686 686 readdcld φ d B j 1 K l 1 + 1 j 1 + 1
688 elfzelz l 1 + 1 j l
689 688 adantl φ d B j 1 K l 1 + 1 j l
690 689 zred φ d B j 1 K l 1 + 1 j l
691 686 ltp1d φ d B j 1 K l 1 + 1 j 1 < 1 + 1
692 elfzle1 l 1 + 1 j 1 + 1 l
693 692 adantl φ d B j 1 K l 1 + 1 j 1 + 1 l
694 686 687 690 691 693 ltletrd φ d B j 1 K l 1 + 1 j 1 < l
695 686 694 ltned φ d B j 1 K l 1 + 1 j 1 l
696 695 necomd φ d B j 1 K l 1 + 1 j l 1
697 696 neneqd φ d B j 1 K l 1 + 1 j ¬ l = 1
698 697 iffalsed φ d B j 1 K l 1 + 1 j if l = 1 d 1 1 d l - d l 1 - 1 = d l - d l 1 - 1
699 698 sumeq2dv φ d B j 1 K l = 1 + 1 j if l = 1 d 1 1 d l - d l 1 - 1 = l = 1 + 1 j d l - d l 1 - 1
700 699 oveq2d φ d B j 1 K d 1 - 1 + l = 1 + 1 j if l = 1 d 1 1 d l - d l 1 - 1 = d 1 - 1 + l = 1 + 1 j d l - d l 1 - 1
701 700 oveq2d φ d B j 1 K j + d 1 1 + l = 1 + 1 j if l = 1 d 1 1 d l - d l 1 - 1 = j + d 1 1 + l = 1 + 1 j d l - d l 1 - 1
702 fzfid φ d B j 1 K 1 + 1 j Fin
703 630 adantr φ d B j 1 K l 1 + 1 j d : 1 K 1 N + K
704 1zzd φ d B j 1 K l 1 + 1 j 1
705 633 adantr φ d B j 1 K l 1 + 1 j K
706 686 687 691 ltled φ d B j 1 K l 1 + 1 j 1 1 + 1
707 686 687 690 706 693 letrd φ d B j 1 K l 1 + 1 j 1 l
708 582 adantr φ d B j 1 K l 1 + 1 j j
709 587 adantr φ d B j 1 K l 1 + 1 j K
710 elfzle2 l 1 + 1 j l j
711 710 adantl φ d B j 1 K l 1 + 1 j l j
712 591 adantr φ d B j 1 K l 1 + 1 j j K
713 690 708 709 711 712 letrd φ d B j 1 K l 1 + 1 j l K
714 704 705 689 707 713 elfzd φ d B j 1 K l 1 + 1 j l 1 K
715 703 714 ffvelcdmd φ d B j 1 K l 1 + 1 j d l 1 N + K
716 715 652 syl φ d B j 1 K l 1 + 1 j d l
717 716 zcnd φ d B j 1 K l 1 + 1 j d l
718 689 704 zsubcld φ d B j 1 K l 1 + 1 j l 1
719 leaddsub 1 1 l 1 + 1 l 1 l 1
720 686 686 690 719 syl3anc φ d B j 1 K l 1 + 1 j 1 + 1 l 1 l 1
721 693 720 mpbid φ d B j 1 K l 1 + 1 j 1 l 1
722 690 686 resubcld φ d B j 1 K l 1 + 1 j l 1
723 690 lem1d φ d B j 1 K l 1 + 1 j l 1 l
724 722 690 709 723 713 letrd φ d B j 1 K l 1 + 1 j l 1 K
725 704 705 718 721 724 elfzd φ d B j 1 K l 1 + 1 j l 1 1 K
726 703 725 ffvelcdmd φ d B j 1 K l 1 + 1 j d l 1 1 N + K
727 676 zcnd d l 1 1 N + K d l 1
728 726 727 syl φ d B j 1 K l 1 + 1 j d l 1
729 717 728 subcld φ d B j 1 K l 1 + 1 j d l d l 1
730 1cnd φ d B j 1 K l 1 + 1 j 1
731 702 729 730 fsumsub φ d B j 1 K l = 1 + 1 j d l - d l 1 - 1 = l = 1 + 1 j d l d l 1 l = 1 + 1 j 1
732 731 oveq2d φ d B j 1 K d 1 - 1 + l = 1 + 1 j d l - d l 1 - 1 = d 1 1 + l = 1 + 1 j d l d l 1 - l = 1 + 1 j 1
733 732 oveq2d φ d B j 1 K j + d 1 1 + l = 1 + 1 j d l - d l 1 - 1 = j + d 1 1 + l = 1 + 1 j d l d l 1 l = 1 + 1 j 1
734 1cnd φ d B j 1 K 1
735 fsumconst 1 + 1 j Fin 1 l = 1 + 1 j 1 = 1 + 1 j 1
736 702 734 735 syl2anc φ d B j 1 K l = 1 + 1 j 1 = 1 + 1 j 1
737 hashfzp1 j 1 1 + 1 j = j 1
738 627 737 syl φ d B j 1 K 1 + 1 j = j 1
739 738 oveq1d φ d B j 1 K 1 + 1 j 1 = j 1 1
740 581 nncnd φ d B j 1 K j
741 740 734 subcld φ d B j 1 K j 1
742 741 mulridd φ d B j 1 K j 1 1 = j 1
743 739 742 eqtrd φ d B j 1 K 1 + 1 j 1 = j 1
744 736 743 eqtrd φ d B j 1 K l = 1 + 1 j 1 = j 1
745 744 oveq2d φ d B j 1 K l = 1 + 1 j d l d l 1 l = 1 + 1 j 1 = l = 1 + 1 j d l d l 1 j 1
746 745 oveq2d φ d B j 1 K d 1 1 + l = 1 + 1 j d l d l 1 - l = 1 + 1 j 1 = d 1 1 + l = 1 + 1 j d l d l 1 - j 1
747 746 oveq2d φ d B j 1 K j + d 1 1 + l = 1 + 1 j d l d l 1 l = 1 + 1 j 1 = j + d 1 1 + l = 1 + 1 j d l d l 1 j 1
748 702 729 fsumcl φ d B j 1 K l = 1 + 1 j d l d l 1
749 643 748 741 addsubassd φ d B j 1 K d 1 1 + l = 1 + 1 j d l d l 1 - j 1 = d 1 1 + l = 1 + 1 j d l d l 1 - j 1
750 749 eqcomd φ d B j 1 K d 1 1 + l = 1 + 1 j d l d l 1 - j 1 = d 1 1 + l = 1 + 1 j d l d l 1 - j 1
751 750 oveq2d φ d B j 1 K j + d 1 1 + l = 1 + 1 j d l d l 1 j 1 = j + d 1 - 1 + l = 1 + 1 j d l d l 1 - j 1
752 643 748 addcld φ d B j 1 K d 1 - 1 + l = 1 + 1 j d l d l 1
753 740 752 741 addsubassd φ d B j 1 K j + d 1 - 1 + l = 1 + 1 j d l d l 1 - j 1 = j + d 1 - 1 + l = 1 + 1 j d l d l 1 - j 1
754 753 eqcomd φ d B j 1 K j + d 1 - 1 + l = 1 + 1 j d l d l 1 - j 1 = j + d 1 - 1 + l = 1 + 1 j d l d l 1 - j 1
755 740 752 741 addsubd φ d B j 1 K j + d 1 - 1 + l = 1 + 1 j d l d l 1 - j 1 = j j 1 + d 1 1 + l = 1 + 1 j d l d l 1
756 740 734 nncand φ d B j 1 K j j 1 = 1
757 1zzd φ d B j 1 K 1
758 624 623 zsubcld φ d B j 1 K j 1
759 630 adantr φ d B j 1 K l 1 j 1 d : 1 K 1 N + K
760 1zzd φ d B j 1 K l 1 j 1 1
761 633 adantr φ d B j 1 K l 1 j 1 K
762 elfzelz l 1 j 1 l
763 762 adantl φ d B j 1 K l 1 j 1 l
764 763 peano2zd φ d B j 1 K l 1 j 1 l + 1
765 1red φ d B j 1 K l 1 j 1 1
766 763 zred φ d B j 1 K l 1 j 1 l
767 766 765 readdcld φ d B j 1 K l 1 j 1 l + 1
768 elfzle1 l 1 j 1 1 l
769 768 adantl φ d B j 1 K l 1 j 1 1 l
770 766 lep1d φ d B j 1 K l 1 j 1 l l + 1
771 765 766 767 769 770 letrd φ d B j 1 K l 1 j 1 1 l + 1
772 582 adantr φ d B j 1 K l 1 j 1 j
773 772 765 resubcld φ d B j 1 K l 1 j 1 j 1
774 587 adantr φ d B j 1 K l 1 j 1 K
775 774 765 resubcld φ d B j 1 K l 1 j 1 K 1
776 elfzle2 l 1 j 1 l j 1
777 776 adantl φ d B j 1 K l 1 j 1 l j 1
778 591 adantr φ d B j 1 K l 1 j 1 j K
779 772 774 765 778 lesub1dd φ d B j 1 K l 1 j 1 j 1 K 1
780 766 773 775 777 779 letrd φ d B j 1 K l 1 j 1 l K 1
781 leaddsub l 1 K l + 1 K l K 1
782 766 765 774 781 syl3anc φ d B j 1 K l 1 j 1 l + 1 K l K 1
783 780 782 mpbird φ d B j 1 K l 1 j 1 l + 1 K
784 760 761 764 771 783 elfzd φ d B j 1 K l 1 j 1 l + 1 1 K
785 759 784 ffvelcdmd φ d B j 1 K l 1 j 1 d l + 1 1 N + K
786 elfzelz d l + 1 1 N + K d l + 1
787 785 786 syl φ d B j 1 K l 1 j 1 d l + 1
788 582 685 resubcld φ d B j 1 K j 1
789 582 lem1d φ d B j 1 K j 1 j
790 788 582 587 789 591 letrd φ d B j 1 K j 1 K
791 790 adantr φ d B j 1 K l 1 j 1 j 1 K
792 766 773 774 777 791 letrd φ d B j 1 K l 1 j 1 l K
793 760 761 763 769 792 elfzd φ d B j 1 K l 1 j 1 l 1 K
794 759 793 ffvelcdmd φ d B j 1 K l 1 j 1 d l 1 N + K
795 794 652 syl φ d B j 1 K l 1 j 1 d l
796 787 795 zsubcld φ d B j 1 K l 1 j 1 d l + 1 d l
797 796 zcnd φ d B j 1 K l 1 j 1 d l + 1 d l
798 fvoveq1 l = w 1 d l + 1 = d w - 1 + 1
799 fveq2 l = w 1 d l = d w 1
800 798 799 oveq12d l = w 1 d l + 1 d l = d w - 1 + 1 d w 1
801 757 757 758 797 800 fsumshft φ d B j 1 K l = 1 j 1 d l + 1 d l = w = 1 + 1 j - 1 + 1 d w - 1 + 1 d w 1
802 oveq1 w = l w 1 = l 1
803 802 fvoveq1d w = l d w - 1 + 1 = d l - 1 + 1
804 802 fveq2d w = l d w 1 = d l 1
805 803 804 oveq12d w = l d w - 1 + 1 d w 1 = d l - 1 + 1 d l 1
806 nfcv _ l d w - 1 + 1 d w 1
807 nfcv _ w d l - 1 + 1 d l 1
808 805 806 807 cbvsum w = 1 + 1 j - 1 + 1 d w - 1 + 1 d w 1 = l = 1 + 1 j - 1 + 1 d l - 1 + 1 d l 1
809 808 a1i φ d B j 1 K w = 1 + 1 j - 1 + 1 d w - 1 + 1 d w 1 = l = 1 + 1 j - 1 + 1 d l - 1 + 1 d l 1
810 801 809 eqtrd φ d B j 1 K l = 1 j 1 d l + 1 d l = l = 1 + 1 j - 1 + 1 d l - 1 + 1 d l 1
811 740 734 npcand φ d B j 1 K j - 1 + 1 = j
812 811 oveq2d φ d B j 1 K 1 + 1 j - 1 + 1 = 1 + 1 j
813 812 sumeq1d φ d B j 1 K l = 1 + 1 j - 1 + 1 d l - 1 + 1 d l 1 = l = 1 + 1 j d l - 1 + 1 d l 1
814 690 recnd φ d B j 1 K l 1 + 1 j l
815 814 730 npcand φ d B j 1 K l 1 + 1 j l - 1 + 1 = l
816 815 fveq2d φ d B j 1 K l 1 + 1 j d l - 1 + 1 = d l
817 816 oveq1d φ d B j 1 K l 1 + 1 j d l - 1 + 1 d l 1 = d l d l 1
818 817 sumeq2dv φ d B j 1 K l = 1 + 1 j d l - 1 + 1 d l 1 = l = 1 + 1 j d l d l 1
819 813 818 eqtrd φ d B j 1 K l = 1 + 1 j - 1 + 1 d l - 1 + 1 d l 1 = l = 1 + 1 j d l d l 1
820 810 819 eqtrd φ d B j 1 K l = 1 j 1 d l + 1 d l = l = 1 + 1 j d l d l 1
821 820 eqcomd φ d B j 1 K l = 1 + 1 j d l d l 1 = l = 1 j 1 d l + 1 d l
822 821 oveq2d φ d B j 1 K d 1 - 1 + l = 1 + 1 j d l d l 1 = d 1 - 1 + l = 1 j 1 d l + 1 d l
823 756 822 oveq12d φ d B j 1 K j j 1 + d 1 1 + l = 1 + 1 j d l d l 1 = 1 + d 1 1 + l = 1 j 1 d l + 1 d l
824 fveq2 r = l d r = d l
825 fveq2 r = l + 1 d r = d l + 1
826 fveq2 r = 1 d r = d 1
827 fveq2 r = j - 1 + 1 d r = d j - 1 + 1
828 811 627 eqeltrd φ d B j 1 K j - 1 + 1 1
829 630 adantr φ d B j 1 K r 1 j - 1 + 1 d : 1 K 1 N + K
830 1zzd φ d B j 1 K r 1 j - 1 + 1 1
831 633 adantr φ d B j 1 K r 1 j - 1 + 1 K
832 elfzelz r 1 j - 1 + 1 r
833 832 adantl φ d B j 1 K r 1 j - 1 + 1 r
834 elfzle1 r 1 j - 1 + 1 1 r
835 834 adantl φ d B j 1 K r 1 j - 1 + 1 1 r
836 833 zred φ d B j 1 K r 1 j - 1 + 1 r
837 582 adantr φ d B j 1 K r 1 j - 1 + 1 j
838 1red φ d B j 1 K r 1 j - 1 + 1 1
839 837 838 resubcld φ d B j 1 K r 1 j - 1 + 1 j 1
840 839 838 readdcld φ d B j 1 K r 1 j - 1 + 1 j - 1 + 1
841 587 adantr φ d B j 1 K r 1 j - 1 + 1 K
842 elfzle2 r 1 j - 1 + 1 r j - 1 + 1
843 842 adantl φ d B j 1 K r 1 j - 1 + 1 r j - 1 + 1
844 811 591 eqbrtrd φ d B j 1 K j - 1 + 1 K
845 844 adantr φ d B j 1 K r 1 j - 1 + 1 j - 1 + 1 K
846 836 840 841 843 845 letrd φ d B j 1 K r 1 j - 1 + 1 r K
847 830 831 833 835 846 elfzd φ d B j 1 K r 1 j - 1 + 1 r 1 K
848 829 847 ffvelcdmd φ d B j 1 K r 1 j - 1 + 1 d r 1 N + K
849 elfzelz d r 1 N + K d r
850 848 849 syl φ d B j 1 K r 1 j - 1 + 1 d r
851 850 zcnd φ d B j 1 K r 1 j - 1 + 1 d r
852 824 825 826 827 758 828 851 telfsum2 φ d B j 1 K l = 1 j 1 d l + 1 d l = d j - 1 + 1 d 1
853 852 oveq2d φ d B j 1 K d 1 - 1 + l = 1 j 1 d l + 1 d l = d 1 1 + d j - 1 + 1 - d 1
854 853 oveq2d φ d B j 1 K 1 + d 1 1 + l = 1 j 1 d l + 1 d l = 1 + d 1 1 + d j - 1 + 1 d 1
855 811 fveq2d φ d B j 1 K d j - 1 + 1 = d j
856 630 579 ffvelcdmd φ d B j 1 K d j 1 N + K
857 elfzelz d j 1 N + K d j
858 856 857 syl φ d B j 1 K d j
859 855 858 eqeltrd φ d B j 1 K d j - 1 + 1
860 859 zcnd φ d B j 1 K d j - 1 + 1
861 640 nnred φ d B j 1 K d 1
862 861 recnd φ d B j 1 K d 1
863 860 862 subcld φ d B j 1 K d j - 1 + 1 d 1
864 734 643 863 addassd φ d B j 1 K 1 + d 1 1 + d j - 1 + 1 d 1 = 1 + d 1 1 + d j - 1 + 1 d 1
865 864 eqcomd φ d B j 1 K 1 + d 1 1 + d j - 1 + 1 d 1 = 1 + d 1 1 + d j - 1 + 1 d 1
866 734 862 pncan3d φ d B j 1 K 1 + d 1 - 1 = d 1
867 866 oveq1d φ d B j 1 K 1 + d 1 1 + d j - 1 + 1 d 1 = d 1 + d j - 1 + 1 - d 1
868 862 860 pncan3d φ d B j 1 K d 1 + d j - 1 + 1 - d 1 = d j - 1 + 1
869 868 855 eqtrd φ d B j 1 K d 1 + d j - 1 + 1 - d 1 = d j
870 867 869 eqtrd φ d B j 1 K 1 + d 1 1 + d j - 1 + 1 d 1 = d j
871 865 870 eqtrd φ d B j 1 K 1 + d 1 1 + d j - 1 + 1 d 1 = d j
872 854 871 eqtrd φ d B j 1 K 1 + d 1 1 + l = 1 j 1 d l + 1 d l = d j
873 823 872 eqtrd φ d B j 1 K j j 1 + d 1 1 + l = 1 + 1 j d l d l 1 = d j
874 755 873 eqtrd φ d B j 1 K j + d 1 - 1 + l = 1 + 1 j d l d l 1 - j 1 = d j
875 754 874 eqtrd φ d B j 1 K j + d 1 - 1 + l = 1 + 1 j d l d l 1 - j 1 = d j
876 751 875 eqtrd φ d B j 1 K j + d 1 1 + l = 1 + 1 j d l d l 1 j 1 = d j
877 747 876 eqtrd φ d B j 1 K j + d 1 1 + l = 1 + 1 j d l d l 1 l = 1 + 1 j 1 = d j
878 733 877 eqtrd φ d B j 1 K j + d 1 1 + l = 1 + 1 j d l - d l 1 - 1 = d j
879 701 878 eqtrd φ d B j 1 K j + d 1 1 + l = 1 + 1 j if l = 1 d 1 1 d l - d l 1 - 1 = d j
880 684 879 eqtrd φ d B j 1 K j + l = 1 j if l = 1 d 1 1 d l - d l 1 - 1 = d j
881 621 880 eqtrd φ d B j 1 K j + l = 1 j if l = K + 1 N + K - d K if l = 1 d 1 1 d l - d l 1 - 1 = d j
882 604 881 eqtrd φ d B j 1 K j + l = 1 j k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 l = d j
883 882 3expa φ d B j 1 K j + l = 1 j k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 l = d j
884 883 mpteq2dva φ d B j 1 K j + l = 1 j k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 l = j 1 K d j
885 nfcv _ q d j
886 nfcv _ j d q
887 fveq2 j = q d j = d q
888 885 886 887 cbvmpt j 1 K d j = q 1 K d q
889 888 a1i φ d B j 1 K d j = q 1 K d q
890 884 889 eqtrd φ d B j 1 K j + l = 1 j k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 l = q 1 K d q
891 558 890 eqtrd φ d B F k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 = q 1 K d q
892 33 891 eqtrd φ d B F G d = q 1 K d q
893 56 ffnd φ d B d Fn 1 K
894 dffn5 d Fn 1 K d = q 1 K d q
895 894 biimpi d Fn 1 K d = q 1 K d q
896 893 895 syl φ d B d = q 1 K d q
897 896 eqcomd φ d B q 1 K d q = d
898 892 897 eqtrd φ d B F G d = d
899 898 ralrimiva φ d B F G d = d