Metamath Proof Explorer


Theorem sticksstones12a

Description: Establish bijective mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 11-Oct-2024)

Ref Expression
Hypotheses sticksstones12a.1 φ N 0
sticksstones12a.2 φ K
sticksstones12a.3 F = a A j 1 K j + l = 1 j a l
sticksstones12a.4 G = b B if K = 0 1 N k 1 K + 1 if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1
sticksstones12a.5 A = g | g : 1 K + 1 0 i = 1 K + 1 g i = N
sticksstones12a.6 B = f | f : 1 K 1 N + K x 1 K y 1 K x < y f x < f y
Assertion sticksstones12a φ d B F G d = d

Proof

Step Hyp Ref Expression
1 sticksstones12a.1 φ N 0
2 sticksstones12a.2 φ K
3 sticksstones12a.3 F = a A j 1 K j + l = 1 j a l
4 sticksstones12a.4 G = b B if K = 0 1 N k 1 K + 1 if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1
5 sticksstones12a.5 A = g | g : 1 K + 1 0 i = 1 K + 1 g i = N
6 sticksstones12a.6 B = f | f : 1 K 1 N + K x 1 K y 1 K x < y f x < f y
7 4 a1i φ d B G = b B if K = 0 1 N k 1 K + 1 if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1
8 0red φ 0
9 2 nngt0d φ 0 < K
10 8 9 ltned φ 0 K
11 10 necomd φ K 0
12 11 neneqd φ ¬ K = 0
13 12 ad2antrr φ d B b = d ¬ K = 0
14 13 iffalsed φ d B b = d if K = 0 1 N k 1 K + 1 if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1 = k 1 K + 1 if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1
15 fveq1 b = d b K = d K
16 15 oveq2d b = d N + K - b K = N + K - d K
17 fveq1 b = d b 1 = d 1
18 17 oveq1d b = d b 1 1 = d 1 1
19 fveq1 b = d b k = d k
20 fveq1 b = d b k 1 = d k 1
21 19 20 oveq12d b = d b k b k 1 = d k d k 1
22 21 oveq1d b = d b k - b k 1 - 1 = d k - d k 1 - 1
23 18 22 ifeq12d b = d if k = 1 b 1 1 b k - b k 1 - 1 = if k = 1 d 1 1 d k - d k 1 - 1
24 16 23 ifeq12d b = d if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1 = if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
25 24 adantl φ d B b = d if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1 = if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
26 25 adantr φ d B b = d k 1 K + 1 if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1 = if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
27 26 mpteq2dva φ d B b = d k 1 K + 1 if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1 = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
28 14 27 eqtrd φ d B b = d if K = 0 1 N k 1 K + 1 if k = K + 1 N + K - b K if k = 1 b 1 1 b k - b k 1 - 1 = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
29 simpr φ d B d B
30 fzfid φ d B 1 K + 1 Fin
31 30 mptexd φ d B k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 V
32 7 28 29 31 fvmptd φ d B G d = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
33 32 fveq2d φ d B F G d = F k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
34 3 a1i φ d B F = a A j 1 K j + l = 1 j a l
35 simpll a = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 j 1 K l 1 j a = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
36 35 fveq1d a = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 j 1 K l 1 j a l = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 l
37 36 sumeq2dv a = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 j 1 K l = 1 j a l = l = 1 j k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 l
38 37 oveq2d a = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 j 1 K j + l = 1 j a l = j + l = 1 j k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 l
39 38 mpteq2dva a = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 j 1 K j + l = 1 j a l = j 1 K j + l = 1 j k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 l
40 39 adantl φ d B a = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 j 1 K j + l = 1 j a l = j 1 K j + l = 1 j k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 l
41 eleq1 N + K - d K = if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 N + K - d K 0 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 0
42 eleq1 if k = 1 d 1 1 d k - d k 1 - 1 = if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 if k = 1 d 1 1 d k - d k 1 - 1 0 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 0
43 6 eleq2i d B d f | f : 1 K 1 N + K x 1 K y 1 K x < y f x < f y
44 vex d V
45 feq1 f = d f : 1 K 1 N + K d : 1 K 1 N + K
46 fveq1 f = d f x = d x
47 fveq1 f = d f y = d y
48 46 47 breq12d f = d f x < f y d x < d y
49 48 imbi2d f = d x < y f x < f y x < y d x < d y
50 49 2ralbidv f = d x 1 K y 1 K x < y f x < f y x 1 K y 1 K x < y d x < d y
51 45 50 anbi12d f = d f : 1 K 1 N + K x 1 K y 1 K x < y f x < f y d : 1 K 1 N + K x 1 K y 1 K x < y d x < d y
52 44 51 elab d f | f : 1 K 1 N + K x 1 K y 1 K x < y f x < f y d : 1 K 1 N + K x 1 K y 1 K x < y d x < d y
53 43 52 bitri d B d : 1 K 1 N + K x 1 K y 1 K x < y d x < d y
54 53 biimpi d B d : 1 K 1 N + K x 1 K y 1 K x < y d x < d y
55 54 adantl φ d B d : 1 K 1 N + K x 1 K y 1 K x < y d x < d y
56 55 simpld φ d B d : 1 K 1 N + K
57 1zzd φ 1
58 57 adantr φ d B 1
59 2 nnnn0d φ K 0
60 59 nn0zd φ K
61 60 adantr φ d B K
62 2 nnge1d φ 1 K
63 62 adantr φ d B 1 K
64 2 nnred φ K
65 64 leidd φ K K
66 65 adantr φ d B K K
67 58 61 61 63 66 elfzd φ d B K 1 K
68 56 67 ffvelrnd φ d B d K 1 N + K
69 elfzle2 d K 1 N + K d K N + K
70 68 69 syl φ d B d K N + K
71 70 adantr φ d B k 1 K + 1 d K N + K
72 71 adantr φ d B k 1 K + 1 k = K + 1 d K N + K
73 elfznn d K 1 N + K d K
74 73 nnnn0d d K 1 N + K d K 0
75 68 74 syl φ d B d K 0
76 75 adantr φ d B k 1 K + 1 d K 0
77 76 adantr φ d B k 1 K + 1 k = K + 1 d K 0
78 1 ad3antrrr φ d B k 1 K + 1 k = K + 1 N 0
79 59 ad3antrrr φ d B k 1 K + 1 k = K + 1 K 0
80 78 79 nn0addcld φ d B k 1 K + 1 k = K + 1 N + K 0
81 nn0sub d K 0 N + K 0 d K N + K N + K - d K 0
82 77 80 81 syl2anc φ d B k 1 K + 1 k = K + 1 d K N + K N + K - d K 0
83 72 82 mpbid φ d B k 1 K + 1 k = K + 1 N + K - d K 0
84 eleq1 d 1 1 = if k = 1 d 1 1 d k - d k 1 - 1 d 1 1 0 if k = 1 d 1 1 d k - d k 1 - 1 0
85 eleq1 d k - d k 1 - 1 = if k = 1 d 1 1 d k - d k 1 - 1 d k - d k 1 - 1 0 if k = 1 d 1 1 d k - d k 1 - 1 0
86 1le1 1 1
87 86 a1i φ d B 1 1
88 58 61 58 87 63 elfzd φ d B 1 1 K
89 56 88 ffvelrnd φ d B d 1 1 N + K
90 elfznn d 1 1 N + K d 1
91 89 90 syl φ d B d 1
92 nnm1nn0 d 1 d 1 1 0
93 91 92 syl φ d B d 1 1 0
94 93 adantr φ d B k 1 K + 1 d 1 1 0
95 94 adantr φ d B k 1 K + 1 ¬ k = K + 1 d 1 1 0
96 95 adantr φ d B k 1 K + 1 ¬ k = K + 1 k = 1 d 1 1 0
97 56 ad3antrrr φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 d : 1 K 1 N + K
98 1zzd φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 1
99 61 ad3antrrr φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 K
100 elfznn k 1 K + 1 k
101 100 nnzd k 1 K + 1 k
102 101 ad3antlr φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k
103 elfzle1 k 1 K + 1 1 k
104 103 ad3antlr φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 1 k
105 neqne ¬ k = K + 1 k K + 1
106 105 adantl φ d B k 1 K + 1 ¬ k = K + 1 k K + 1
107 106 necomd φ d B k 1 K + 1 ¬ k = K + 1 K + 1 k
108 100 ad2antlr φ d B k 1 K + 1 ¬ k = K + 1 k
109 108 nnred φ d B k 1 K + 1 ¬ k = K + 1 k
110 64 ad3antrrr φ d B k 1 K + 1 ¬ k = K + 1 K
111 1red φ d B k 1 K + 1 ¬ k = K + 1 1
112 110 111 readdcld φ d B k 1 K + 1 ¬ k = K + 1 K + 1
113 elfzle2 k 1 K + 1 k K + 1
114 113 ad2antlr φ d B k 1 K + 1 ¬ k = K + 1 k K + 1
115 109 112 114 leltned φ d B k 1 K + 1 ¬ k = K + 1 k < K + 1 K + 1 k
116 107 115 mpbird φ d B k 1 K + 1 ¬ k = K + 1 k < K + 1
117 101 ad2antlr φ d B k 1 K + 1 ¬ k = K + 1 k
118 61 ad2antrr φ d B k 1 K + 1 ¬ k = K + 1 K
119 zleltp1 k K k K k < K + 1
120 117 118 119 syl2anc φ d B k 1 K + 1 ¬ k = K + 1 k K k < K + 1
121 116 120 mpbird φ d B k 1 K + 1 ¬ k = K + 1 k K
122 121 adantr φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k K
123 98 99 102 104 122 elfzd φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k 1 K
124 97 123 ffvelrnd φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 d k 1 N + K
125 elfznn d k 1 N + K d k
126 125 nnzd d k 1 N + K d k
127 124 126 syl φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 d k
128 1zzd φ k 1 K + 1 ¬ k = 1 1
129 60 ad2antrr φ k 1 K + 1 ¬ k = 1 K
130 129 3impa φ k 1 K + 1 ¬ k = 1 K
131 101 adantl φ k 1 K + 1 k
132 131 adantr φ k 1 K + 1 ¬ k = 1 k
133 132 3impa φ k 1 K + 1 ¬ k = 1 k
134 133 128 zsubcld φ k 1 K + 1 ¬ k = 1 k 1
135 neqne ¬ k = 1 k 1
136 135 3ad2ant3 φ k 1 K + 1 ¬ k = 1 k 1
137 1red φ 1
138 137 3ad2ant1 φ k 1 K + 1 ¬ k = 1 1
139 133 zred φ k 1 K + 1 ¬ k = 1 k
140 simp2 φ k 1 K + 1 ¬ k = 1 k 1 K + 1
141 140 103 syl φ k 1 K + 1 ¬ k = 1 1 k
142 138 139 141 leltned φ k 1 K + 1 ¬ k = 1 1 < k k 1
143 136 142 mpbird φ k 1 K + 1 ¬ k = 1 1 < k
144 128 133 zltp1led φ k 1 K + 1 ¬ k = 1 1 < k 1 + 1 k
145 143 144 mpbid φ k 1 K + 1 ¬ k = 1 1 + 1 k
146 leaddsub 1 1 k 1 + 1 k 1 k 1
147 138 138 139 146 syl3anc φ k 1 K + 1 ¬ k = 1 1 + 1 k 1 k 1
148 145 147 mpbid φ k 1 K + 1 ¬ k = 1 1 k 1
149 134 zred φ k 1 K + 1 ¬ k = 1 k 1
150 64 3ad2ant1 φ k 1 K + 1 ¬ k = 1 K
151 1red φ k 1 K + 1 ¬ k = 1 1
152 150 151 readdcld φ k 1 K + 1 ¬ k = 1 K + 1
153 152 151 resubcld φ k 1 K + 1 ¬ k = 1 K + 1 - 1
154 113 3ad2ant2 φ k 1 K + 1 ¬ k = 1 k K + 1
155 139 152 151 154 lesub1dd φ k 1 K + 1 ¬ k = 1 k 1 K + 1 - 1
156 64 recnd φ K
157 156 3ad2ant1 φ k 1 K + 1 ¬ k = 1 K
158 1cnd φ k 1 K + 1 ¬ k = 1 1
159 157 158 pncand φ k 1 K + 1 ¬ k = 1 K + 1 - 1 = K
160 65 3ad2ant1 φ k 1 K + 1 ¬ k = 1 K K
161 159 160 eqbrtrd φ k 1 K + 1 ¬ k = 1 K + 1 - 1 K
162 149 153 150 155 161 letrd φ k 1 K + 1 ¬ k = 1 k 1 K
163 128 130 134 148 162 elfzd φ k 1 K + 1 ¬ k = 1 k 1 1 K
164 163 ad5ant135 φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k 1 1 K
165 97 164 ffvelrnd φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 d k 1 1 N + K
166 elfznn d k 1 1 N + K d k 1
167 165 166 syl φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 d k 1
168 167 nnzd φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 d k 1
169 127 168 zsubcld φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 d k d k 1
170 169 98 zsubcld φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 d k - d k 1 - 1
171 108 adantr φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k
172 171 nnred φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k
173 172 ltm1d φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k 1 < k
174 164 123 jca φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k 1 1 K k 1 K
175 55 simprd φ d B x 1 K y 1 K x < y d x < d y
176 175 ad3antrrr φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 x 1 K y 1 K x < y d x < d y
177 breq1 x = k 1 x < y k 1 < y
178 fveq2 x = k 1 d x = d k 1
179 178 breq1d x = k 1 d x < d y d k 1 < d y
180 177 179 imbi12d x = k 1 x < y d x < d y k 1 < y d k 1 < d y
181 breq2 y = k k 1 < y k 1 < k
182 fveq2 y = k d y = d k
183 182 breq2d y = k d k 1 < d y d k 1 < d k
184 181 183 imbi12d y = k k 1 < y d k 1 < d y k 1 < k d k 1 < d k
185 180 184 rspc2va k 1 1 K k 1 K x 1 K y 1 K x < y d x < d y k 1 < k d k 1 < d k
186 174 176 185 syl2anc φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 k 1 < k d k 1 < d k
187 173 186 mpd φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 d k 1 < d k
188 167 nnred φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 d k 1
189 127 zred φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 d k
190 188 189 posdifd φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 d k 1 < d k 0 < d k d k 1
191 187 190 mpbid φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 0 < d k d k 1
192 0zd φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 0
193 192 169 zltlem1d φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 0 < d k d k 1 0 d k - d k 1 - 1
194 191 193 mpbid φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 0 d k - d k 1 - 1
195 170 194 jca φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 d k - d k 1 - 1 0 d k - d k 1 - 1
196 elnn0z d k - d k 1 - 1 0 d k - d k 1 - 1 0 d k - d k 1 - 1
197 195 196 sylibr φ d B k 1 K + 1 ¬ k = K + 1 ¬ k = 1 d k - d k 1 - 1 0
198 84 85 96 197 ifbothda φ d B k 1 K + 1 ¬ k = K + 1 if k = 1 d 1 1 d k - d k 1 - 1 0
199 41 42 83 198 ifbothda φ d B k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 0
200 eqid k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
201 199 200 fmptd φ d B k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 : 1 K + 1 0
202 eqidd φ d B i 1 K + 1 k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
203 simpr φ d B i 1 K + 1 k = i k = i
204 203 eqeq1d φ d B i 1 K + 1 k = i k = K + 1 i = K + 1
205 203 eqeq1d φ d B i 1 K + 1 k = i k = 1 i = 1
206 203 fveq2d φ d B i 1 K + 1 k = i d k = d i
207 203 fvoveq1d φ d B i 1 K + 1 k = i d k 1 = d i 1
208 206 207 oveq12d φ d B i 1 K + 1 k = i d k d k 1 = d i d i 1
209 208 oveq1d φ d B i 1 K + 1 k = i d k - d k 1 - 1 = d i - d i 1 - 1
210 205 209 ifbieq2d φ d B i 1 K + 1 k = i if k = 1 d 1 1 d k - d k 1 - 1 = if i = 1 d 1 1 d i - d i 1 - 1
211 204 210 ifbieq2d φ d B i 1 K + 1 k = i if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 = if i = K + 1 N + K - d K if i = 1 d 1 1 d i - d i 1 - 1
212 simpr φ d B i 1 K + 1 i 1 K + 1
213 ovexd φ d B i 1 K + 1 N + K - d K V
214 ovexd φ d B i 1 K + 1 d 1 1 V
215 ovexd φ d B i 1 K + 1 d i - d i 1 - 1 V
216 214 215 ifcld φ d B i 1 K + 1 if i = 1 d 1 1 d i - d i 1 - 1 V
217 213 216 ifcld φ d B i 1 K + 1 if i = K + 1 N + K - d K if i = 1 d 1 1 d i - d i 1 - 1 V
218 202 211 212 217 fvmptd φ d B i 1 K + 1 k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 i = if i = K + 1 N + K - d K if i = 1 d 1 1 d i - d i 1 - 1
219 218 sumeq2dv φ d B i = 1 K + 1 k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 i = i = 1 K + 1 if i = K + 1 N + K - d K if i = 1 d 1 1 d i - d i 1 - 1
220 eqeq1 i = k i = K + 1 k = K + 1
221 eqeq1 i = k i = 1 k = 1
222 fveq2 i = k d i = d k
223 fvoveq1 i = k d i 1 = d k 1
224 222 223 oveq12d i = k d i d i 1 = d k d k 1
225 224 oveq1d i = k d i - d i 1 - 1 = d k - d k 1 - 1
226 221 225 ifbieq2d i = k if i = 1 d 1 1 d i - d i 1 - 1 = if k = 1 d 1 1 d k - d k 1 - 1
227 220 226 ifbieq2d i = k if i = K + 1 N + K - d K if i = 1 d 1 1 d i - d i 1 - 1 = if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
228 nfcv _ k 1 K + 1
229 nfcv _ i 1 K + 1
230 nfcv _ k if i = K + 1 N + K - d K if i = 1 d 1 1 d i - d i 1 - 1
231 nfcv _ i if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
232 227 228 229 230 231 cbvsum i = 1 K + 1 if i = K + 1 N + K - d K if i = 1 d 1 1 d i - d i 1 - 1 = k = 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
233 232 a1i φ d B i = 1 K + 1 if i = K + 1 N + K - d K if i = 1 d 1 1 d i - d i 1 - 1 = k = 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
234 eqid 1 = 1
235 1p0e1 1 + 0 = 1
236 234 235 eqtr4i 1 = 1 + 0
237 236 a1i φ 1 = 1 + 0
238 0le1 0 1
239 238 a1i φ 0 1
240 137 8 64 137 62 239 le2addd φ 1 + 0 K + 1
241 237 240 eqbrtrd φ 1 K + 1
242 60 peano2zd φ K + 1
243 eluz 1 K + 1 K + 1 1 1 K + 1
244 57 242 243 syl2anc φ K + 1 1 1 K + 1
245 241 244 mpbird φ K + 1 1
246 245 adantr φ d B K + 1 1
247 199 nn0cnd φ d B k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
248 eqeq1 k = K + 1 k = K + 1 K + 1 = K + 1
249 eqeq1 k = K + 1 k = 1 K + 1 = 1
250 fveq2 k = K + 1 d k = d K + 1
251 fvoveq1 k = K + 1 d k 1 = d K + 1 - 1
252 250 251 oveq12d k = K + 1 d k d k 1 = d K + 1 d K + 1 - 1
253 252 oveq1d k = K + 1 d k - d k 1 - 1 = d K + 1 - d K + 1 - 1 - 1
254 249 253 ifbieq2d k = K + 1 if k = 1 d 1 1 d k - d k 1 - 1 = if K + 1 = 1 d 1 1 d K + 1 - d K + 1 - 1 - 1
255 248 254 ifbieq2d k = K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 = if K + 1 = K + 1 N + K - d K if K + 1 = 1 d 1 1 d K + 1 - d K + 1 - 1 - 1
256 246 247 255 fsumm1 φ d B k = 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 = k = 1 K + 1 - 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 + if K + 1 = K + 1 N + K - d K if K + 1 = 1 d 1 1 d K + 1 - d K + 1 - 1 - 1
257 156 adantr φ d B K
258 1cnd φ d B 1
259 257 258 pncand φ d B K + 1 - 1 = K
260 259 oveq2d φ d B 1 K + 1 - 1 = 1 K
261 260 sumeq1d φ d B k = 1 K + 1 - 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 = k = 1 K if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
262 eqidd φ d B K + 1 = K + 1
263 262 iftrued φ d B if K + 1 = K + 1 N + K - d K if K + 1 = 1 d 1 1 d K + 1 - d K + 1 - 1 - 1 = N + K - d K
264 261 263 oveq12d φ d B k = 1 K + 1 - 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 + if K + 1 = K + 1 N + K - d K if K + 1 = 1 d 1 1 d K + 1 - d K + 1 - 1 - 1 = k = 1 K if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 + N + K - d K
265 elfzelz k 1 K k
266 265 adantl φ d B k 1 K k
267 266 zred φ d B k 1 K k
268 64 ad2antrr φ d B k 1 K K
269 1red φ d B k 1 K 1
270 268 269 readdcld φ d B k 1 K K + 1
271 elfzle2 k 1 K k K
272 271 adantl φ d B k 1 K k K
273 268 ltp1d φ d B k 1 K K < K + 1
274 267 268 270 272 273 lelttrd φ d B k 1 K k < K + 1
275 267 274 ltned φ d B k 1 K k K + 1
276 275 neneqd φ d B k 1 K ¬ k = K + 1
277 276 iffalsed φ d B k 1 K if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 = if k = 1 d 1 1 d k - d k 1 - 1
278 277 sumeq2dv φ d B k = 1 K if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 = k = 1 K if k = 1 d 1 1 d k - d k 1 - 1
279 eqeq1 d 1 1 = if k = 1 d 1 1 d k - d k 1 - 1 d 1 1 = if k = 1 d 1 d k d k 1 1 if k = 1 d 1 1 d k - d k 1 - 1 = if k = 1 d 1 d k d k 1 1
280 eqeq1 d k - d k 1 - 1 = if k = 1 d 1 1 d k - d k 1 - 1 d k - d k 1 - 1 = if k = 1 d 1 d k d k 1 1 if k = 1 d 1 1 d k - d k 1 - 1 = if k = 1 d 1 d k d k 1 1
281 simpr φ d B k 1 K k = 1 k = 1
282 281 iftrued φ d B k 1 K k = 1 if k = 1 d 1 d k d k 1 = d 1
283 282 eqcomd φ d B k 1 K k = 1 d 1 = if k = 1 d 1 d k d k 1
284 283 oveq1d φ d B k 1 K k = 1 d 1 1 = if k = 1 d 1 d k d k 1 1
285 simpr φ d B k 1 K ¬ k = 1 ¬ k = 1
286 285 iffalsed φ d B k 1 K ¬ k = 1 if k = 1 d 1 d k d k 1 = d k d k 1
287 286 eqcomd φ d B k 1 K ¬ k = 1 d k d k 1 = if k = 1 d 1 d k d k 1
288 287 oveq1d φ d B k 1 K ¬ k = 1 d k - d k 1 - 1 = if k = 1 d 1 d k d k 1 1
289 279 280 284 288 ifbothda φ d B k 1 K if k = 1 d 1 1 d k - d k 1 - 1 = if k = 1 d 1 d k d k 1 1
290 289 sumeq2dv φ d B k = 1 K if k = 1 d 1 1 d k - d k 1 - 1 = k = 1 K if k = 1 d 1 d k d k 1 1
291 fzfid φ d B 1 K Fin
292 eleq1 d 1 = if k = 1 d 1 d k d k 1 d 1 if k = 1 d 1 d k d k 1
293 eleq1 d k d k 1 = if k = 1 d 1 d k d k 1 d k d k 1 if k = 1 d 1 d k d k 1
294 56 3adant3 φ d B k 1 K d : 1 K 1 N + K
295 88 3adant3 φ d B k 1 K 1 1 K
296 294 295 ffvelrnd φ d B k 1 K d 1 1 N + K
297 90 nnzd d 1 1 N + K d 1
298 296 297 syl φ d B k 1 K d 1
299 298 adantr φ d B k 1 K k = 1 d 1
300 simp3 φ d B k 1 K k 1 K
301 294 300 ffvelrnd φ d B k 1 K d k 1 N + K
302 301 126 syl φ d B k 1 K d k
303 302 adantr φ d B k 1 K ¬ k = 1 d k
304 294 adantr φ d B k 1 K ¬ k = 1 d : 1 K 1 N + K
305 1zzd φ d B k 1 K ¬ k = 1 1
306 61 3adant3 φ d B k 1 K K
307 306 adantr φ d B k 1 K ¬ k = 1 K
308 266 3impa φ d B k 1 K k
309 308 adantr φ d B k 1 K ¬ k = 1 k
310 309 305 zsubcld φ d B k 1 K ¬ k = 1 k 1
311 elfzle1 k 1 K 1 k
312 300 311 syl φ d B k 1 K 1 k
313 312 adantr φ d B k 1 K ¬ k = 1 1 k
314 135 adantl φ d B k 1 K ¬ k = 1 k 1
315 313 314 jca φ d B k 1 K ¬ k = 1 1 k k 1
316 1red φ d B k 1 K ¬ k = 1 1
317 309 zred φ d B k 1 K ¬ k = 1 k
318 316 317 ltlend φ d B k 1 K ¬ k = 1 1 < k 1 k k 1
319 315 318 mpbird φ d B k 1 K ¬ k = 1 1 < k
320 305 309 zltlem1d φ d B k 1 K ¬ k = 1 1 < k 1 k 1
321 319 320 mpbid φ d B k 1 K ¬ k = 1 1 k 1
322 310 zred φ d B k 1 K ¬ k = 1 k 1
323 307 zred φ d B k 1 K ¬ k = 1 K
324 317 lem1d φ d B k 1 K ¬ k = 1 k 1 k
325 300 271 syl φ d B k 1 K k K
326 325 adantr φ d B k 1 K ¬ k = 1 k K
327 322 317 323 324 326 letrd φ d B k 1 K ¬ k = 1 k 1 K
328 305 307 310 321 327 elfzd φ d B k 1 K ¬ k = 1 k 1 1 K
329 304 328 ffvelrnd φ d B k 1 K ¬ k = 1 d k 1 1 N + K
330 329 166 syl φ d B k 1 K ¬ k = 1 d k 1
331 330 nnzd φ d B k 1 K ¬ k = 1 d k 1
332 303 331 zsubcld φ d B k 1 K ¬ k = 1 d k d k 1
333 292 293 299 332 ifbothda φ d B k 1 K if k = 1 d 1 d k d k 1
334 333 3expa φ d B k 1 K if k = 1 d 1 d k d k 1
335 334 zcnd φ d B k 1 K if k = 1 d 1 d k d k 1
336 258 adantr φ d B k 1 K 1
337 291 335 336 fsumsub φ d B k = 1 K if k = 1 d 1 d k d k 1 1 = k = 1 K if k = 1 d 1 d k d k 1 k = 1 K 1
338 simpr φ d B 1 = K 1 = K
339 338 oveq2d φ d B 1 = K 1 1 = 1 K
340 339 eqcomd φ d B 1 = K 1 K = 1 1
341 340 sumeq1d φ d B 1 = K k = 1 K if k = 1 d 1 d k d k 1 = k = 1 1 if k = 1 d 1 d k d k 1
342 1zzd φ d B 1
343 234 a1i φ d B 1 = 1
344 343 iftrued φ d B if 1 = 1 d 1 d 1 d 1 1 = d 1
345 91 nncnd φ d B d 1
346 344 345 eqeltrd φ d B if 1 = 1 d 1 d 1 d 1 1
347 eqeq1 k = 1 k = 1 1 = 1
348 fveq2 k = 1 d k = d 1
349 fvoveq1 k = 1 d k 1 = d 1 1
350 348 349 oveq12d k = 1 d k d k 1 = d 1 d 1 1
351 347 350 ifbieq2d k = 1 if k = 1 d 1 d k d k 1 = if 1 = 1 d 1 d 1 d 1 1
352 351 fsum1 1 if 1 = 1 d 1 d 1 d 1 1 k = 1 1 if k = 1 d 1 d k d k 1 = if 1 = 1 d 1 d 1 d 1 1
353 342 346 352 syl2anc φ d B k = 1 1 if k = 1 d 1 d k d k 1 = if 1 = 1 d 1 d 1 d 1 1
354 353 344 eqtrd φ d B k = 1 1 if k = 1 d 1 d k d k 1 = d 1
355 354 adantr φ d B 1 = K k = 1 1 if k = 1 d 1 d k d k 1 = d 1
356 fveq2 1 = K d 1 = d K
357 356 adantl φ d B 1 = K d 1 = d K
358 341 355 357 3eqtrd φ d B 1 = K k = 1 K if k = 1 d 1 d k d k 1 = d K
359 2 3ad2ant1 φ d B 1 < K K
360 nnuz = 1
361 360 a1i φ d B 1 < K = 1
362 359 361 eleqtrd φ d B 1 < K K 1
363 335 3adantl3 φ d B 1 < K k 1 K if k = 1 d 1 d k d k 1
364 iftrue k = 1 if k = 1 d 1 d k d k 1 = d 1
365 362 363 364 fsum1p φ d B 1 < K k = 1 K if k = 1 d 1 d k d k 1 = d 1 + k = 1 + 1 K if k = 1 d 1 d k d k 1
366 1red φ d B 1 < K k 1 + 1 K 1
367 elfzle1 k 1 + 1 K 1 + 1 k
368 367 adantl φ d B 1 < K k 1 + 1 K 1 + 1 k
369 1zzd φ d B 1 < K k 1 + 1 K 1
370 elfzelz k 1 + 1 K k
371 370 adantl φ d B 1 < K k 1 + 1 K k
372 369 371 zltp1led φ d B 1 < K k 1 + 1 K 1 < k 1 + 1 k
373 368 372 mpbird φ d B 1 < K k 1 + 1 K 1 < k
374 366 373 ltned φ d B 1 < K k 1 + 1 K 1 k
375 374 necomd φ d B 1 < K k 1 + 1 K k 1
376 375 neneqd φ d B 1 < K k 1 + 1 K ¬ k = 1
377 376 iffalsed φ d B 1 < K k 1 + 1 K if k = 1 d 1 d k d k 1 = d k d k 1
378 377 sumeq2dv φ d B 1 < K k = 1 + 1 K if k = 1 d 1 d k d k 1 = k = 1 + 1 K d k d k 1
379 378 oveq2d φ d B 1 < K d 1 + k = 1 + 1 K if k = 1 d 1 d k d k 1 = d 1 + k = 1 + 1 K d k d k 1
380 257 3adant3 φ d B 1 < K K
381 1cnd φ d B 1 < K 1
382 380 381 npcand φ d B 1 < K K - 1 + 1 = K
383 382 eqcomd φ d B 1 < K K = K - 1 + 1
384 383 oveq2d φ d B 1 < K 1 + 1 K = 1 + 1 K - 1 + 1
385 384 sumeq1d φ d B 1 < K k = 1 + 1 K d k d k 1 = k = 1 + 1 K - 1 + 1 d k d k 1
386 385 oveq2d φ d B 1 < K d 1 + k = 1 + 1 K d k d k 1 = d 1 + k = 1 + 1 K - 1 + 1 d k d k 1
387 elfzelz k 1 + 1 K - 1 + 1 k
388 387 adantl φ d B 1 < K k 1 + 1 K - 1 + 1 k
389 388 zcnd φ d B 1 < K k 1 + 1 K - 1 + 1 k
390 1cnd φ d B 1 < K k 1 + 1 K - 1 + 1 1
391 389 390 npcand φ d B 1 < K k 1 + 1 K - 1 + 1 k - 1 + 1 = k
392 391 eqcomd φ d B 1 < K k 1 + 1 K - 1 + 1 k = k - 1 + 1
393 392 fveq2d φ d B 1 < K k 1 + 1 K - 1 + 1 d k = d k - 1 + 1
394 393 oveq1d φ d B 1 < K k 1 + 1 K - 1 + 1 d k d k 1 = d k - 1 + 1 d k 1
395 394 sumeq2dv φ d B 1 < K k = 1 + 1 K - 1 + 1 d k d k 1 = k = 1 + 1 K - 1 + 1 d k - 1 + 1 d k 1
396 395 oveq2d φ d B 1 < K d 1 + k = 1 + 1 K - 1 + 1 d k d k 1 = d 1 + k = 1 + 1 K - 1 + 1 d k - 1 + 1 d k 1
397 58 3adant3 φ d B 1 < K 1
398 61 3adant3 φ d B 1 < K K
399 398 397 zsubcld φ d B 1 < K K 1
400 56 3adant3 φ d B 1 < K d : 1 K 1 N + K
401 400 adantr φ d B 1 < K s 1 K 1 d : 1 K 1 N + K
402 1zzd φ d B 1 < K s 1 K 1 1
403 398 adantr φ d B 1 < K s 1 K 1 K
404 elfznn s 1 K 1 s
405 404 adantl φ d B 1 < K s 1 K 1 s
406 405 nnzd φ d B 1 < K s 1 K 1 s
407 406 peano2zd φ d B 1 < K s 1 K 1 s + 1
408 1red φ d B 1 < K s 1 K 1 1
409 405 nnred φ d B 1 < K s 1 K 1 s
410 407 zred φ d B 1 < K s 1 K 1 s + 1
411 405 nnge1d φ d B 1 < K s 1 K 1 1 s
412 409 lep1d φ d B 1 < K s 1 K 1 s s + 1
413 408 409 410 411 412 letrd φ d B 1 < K s 1 K 1 1 s + 1
414 elfzle2 s 1 K 1 s K 1
415 414 adantl φ d B 1 < K s 1 K 1 s K 1
416 403 zred φ d B 1 < K s 1 K 1 K
417 leaddsub s 1 K s + 1 K s K 1
418 409 408 416 417 syl3anc φ d B 1 < K s 1 K 1 s + 1 K s K 1
419 415 418 mpbird φ d B 1 < K s 1 K 1 s + 1 K
420 402 403 407 413 419 elfzd φ d B 1 < K s 1 K 1 s + 1 1 K
421 401 420 ffvelrnd φ d B 1 < K s 1 K 1 d s + 1 1 N + K
422 elfznn d s + 1 1 N + K d s + 1
423 421 422 syl φ d B 1 < K s 1 K 1 d s + 1
424 423 nnzd φ d B 1 < K s 1 K 1 d s + 1
425 416 408 resubcld φ d B 1 < K s 1 K 1 K 1
426 416 lem1d φ d B 1 < K s 1 K 1 K 1 K
427 409 425 416 415 426 letrd φ d B 1 < K s 1 K 1 s K
428 402 403 406 411 427 elfzd φ d B 1 < K s 1 K 1 s 1 K
429 401 ffvelrnda φ d B 1 < K s 1 K 1 s 1 K d s 1 N + K
430 428 429 mpdan φ d B 1 < K s 1 K 1 d s 1 N + K
431 elfznn d s 1 N + K d s
432 430 431 syl φ d B 1 < K s 1 K 1 d s
433 432 nnzd φ d B 1 < K s 1 K 1 d s
434 424 433 zsubcld φ d B 1 < K s 1 K 1 d s + 1 d s
435 434 zcnd φ d B 1 < K s 1 K 1 d s + 1 d s
436 fvoveq1 s = k 1 d s + 1 = d k - 1 + 1
437 fveq2 s = k 1 d s = d k 1
438 436 437 oveq12d s = k 1 d s + 1 d s = d k - 1 + 1 d k 1
439 397 397 399 435 438 fsumshft φ d B 1 < K s = 1 K 1 d s + 1 d s = k = 1 + 1 K - 1 + 1 d k - 1 + 1 d k 1
440 439 eqcomd φ d B 1 < K k = 1 + 1 K - 1 + 1 d k - 1 + 1 d k 1 = s = 1 K 1 d s + 1 d s
441 440 oveq2d φ d B 1 < K d 1 + k = 1 + 1 K - 1 + 1 d k - 1 + 1 d k 1 = d 1 + s = 1 K 1 d s + 1 d s
442 fveq2 o = s d o = d s
443 fveq2 o = s + 1 d o = d s + 1
444 fveq2 o = 1 d o = d 1
445 fveq2 o = K - 1 + 1 d o = d K - 1 + 1
446 382 362 eqeltrd φ d B 1 < K K - 1 + 1 1
447 56 adantr φ d B 1 < K d : 1 K 1 N + K
448 447 3impa φ d B 1 < K d : 1 K 1 N + K
449 448 ffvelrnda φ d B 1 < K o 1 K d o 1 N + K
450 449 ex φ d B 1 < K o 1 K d o 1 N + K
451 382 oveq2d φ d B 1 < K 1 K - 1 + 1 = 1 K
452 451 eleq2d φ d B 1 < K o 1 K - 1 + 1 o 1 K
453 452 imbi1d φ d B 1 < K o 1 K - 1 + 1 d o 1 N + K o 1 K d o 1 N + K
454 450 453 mpbird φ d B 1 < K o 1 K - 1 + 1 d o 1 N + K
455 454 imp φ d B 1 < K o 1 K - 1 + 1 d o 1 N + K
456 elfznn d o 1 N + K d o
457 455 456 syl φ d B 1 < K o 1 K - 1 + 1 d o
458 457 nncnd φ d B 1 < K o 1 K - 1 + 1 d o
459 442 443 444 445 399 446 458 telfsum2 φ d B 1 < K s = 1 K 1 d s + 1 d s = d K - 1 + 1 d 1
460 459 oveq2d φ d B 1 < K d 1 + s = 1 K 1 d s + 1 d s = d 1 + d K - 1 + 1 - d 1
461 382 fveq2d φ d B 1 < K d K - 1 + 1 = d K
462 461 oveq1d φ d B 1 < K d K - 1 + 1 d 1 = d K d 1
463 462 oveq2d φ d B 1 < K d 1 + d K - 1 + 1 - d 1 = d 1 + d K - d 1
464 345 3adant3 φ d B 1 < K d 1
465 68 73 syl φ d B d K
466 465 nncnd φ d B d K
467 466 3adant3 φ d B 1 < K d K
468 464 467 pncan3d φ d B 1 < K d 1 + d K - d 1 = d K
469 eqidd φ d B 1 < K d K = d K
470 468 469 eqtrd φ d B 1 < K d 1 + d K - d 1 = d K
471 463 470 eqtrd φ d B 1 < K d 1 + d K - 1 + 1 - d 1 = d K
472 460 471 eqtrd φ d B 1 < K d 1 + s = 1 K 1 d s + 1 d s = d K
473 441 472 eqtrd φ d B 1 < K d 1 + k = 1 + 1 K - 1 + 1 d k - 1 + 1 d k 1 = d K
474 396 473 eqtrd φ d B 1 < K d 1 + k = 1 + 1 K - 1 + 1 d k d k 1 = d K
475 386 474 eqtrd φ d B 1 < K d 1 + k = 1 + 1 K d k d k 1 = d K
476 379 475 eqtrd φ d B 1 < K d 1 + k = 1 + 1 K if k = 1 d 1 d k d k 1 = d K
477 365 476 eqtrd φ d B 1 < K k = 1 K if k = 1 d 1 d k d k 1 = d K
478 477 3expa φ d B 1 < K k = 1 K if k = 1 d 1 d k d k 1 = d K
479 137 adantr φ d B 1
480 64 adantr φ d B K
481 479 480 leloed φ d B 1 K 1 < K 1 = K
482 63 481 mpbid φ d B 1 < K 1 = K
483 482 orcomd φ d B 1 = K 1 < K
484 358 478 483 mpjaodan φ d B k = 1 K if k = 1 d 1 d k d k 1 = d K
485 fsumconst 1 K Fin 1 k = 1 K 1 = 1 K 1
486 291 258 485 syl2anc φ d B k = 1 K 1 = 1 K 1
487 59 adantr φ d B K 0
488 hashfz1 K 0 1 K = K
489 487 488 syl φ d B 1 K = K
490 489 oveq1d φ d B 1 K 1 = K 1
491 257 mulid1d φ d B K 1 = K
492 490 491 eqtrd φ d B 1 K 1 = K
493 486 492 eqtrd φ d B k = 1 K 1 = K
494 484 493 oveq12d φ d B k = 1 K if k = 1 d 1 d k d k 1 k = 1 K 1 = d K K
495 337 494 eqtrd φ d B k = 1 K if k = 1 d 1 d k d k 1 1 = d K K
496 290 495 eqtrd φ d B k = 1 K if k = 1 d 1 1 d k - d k 1 - 1 = d K K
497 466 257 subcld φ d B d K K
498 497 addid1d φ d B d K - K + 0 = d K K
499 498 eqcomd φ d B d K K = d K - K + 0
500 0cnd φ d B 0
501 497 500 addcomd φ d B d K - K + 0 = 0 + d K - K
502 499 501 eqtrd φ d B d K K = 0 + d K - K
503 496 502 eqtrd φ d B k = 1 K if k = 1 d 1 1 d k - d k 1 - 1 = 0 + d K - K
504 500 257 466 subsub2d φ d B 0 K d K = 0 + d K - K
505 504 eqcomd φ d B 0 + d K - K = 0 K d K
506 503 505 eqtrd φ d B k = 1 K if k = 1 d 1 1 d k - d k 1 - 1 = 0 K d K
507 1 nn0cnd φ N
508 507 adantr φ d B N
509 508 subidd φ d B N N = 0
510 509 eqcomd φ d B 0 = N N
511 510 oveq1d φ d B 0 K d K = N - N - K d K
512 506 511 eqtrd φ d B k = 1 K if k = 1 d 1 1 d k - d k 1 - 1 = N - N - K d K
513 257 466 subcld φ d B K d K
514 508 508 513 subsub4d φ d B N - N - K d K = N N + K - d K
515 512 514 eqtrd φ d B k = 1 K if k = 1 d 1 1 d k - d k 1 - 1 = N N + K - d K
516 508 257 466 addsubassd φ d B N + K - d K = N + K - d K
517 516 eqcomd φ d B N + K - d K = N + K - d K
518 517 oveq2d φ d B N N + K - d K = N N + K - d K
519 515 518 eqtrd φ d B k = 1 K if k = 1 d 1 1 d k - d k 1 - 1 = N N + K - d K
520 278 519 eqtrd φ d B k = 1 K if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 = N N + K - d K
521 eleq1 d 1 1 = if k = 1 d 1 1 d k - d k 1 - 1 d 1 1 if k = 1 d 1 1 d k - d k 1 - 1
522 eleq1 d k - d k 1 - 1 = if k = 1 d 1 1 d k - d k 1 - 1 d k - d k 1 - 1 if k = 1 d 1 1 d k - d k 1 - 1
523 1zzd φ d B k 1 K 1
524 298 523 zsubcld φ d B k 1 K d 1 1
525 524 adantr φ d B k 1 K k = 1 d 1 1
526 523 adantr φ d B k 1 K ¬ k = 1 1
527 332 526 zsubcld φ d B k 1 K ¬ k = 1 d k - d k 1 - 1
528 521 522 525 527 ifbothda φ d B k 1 K if k = 1 d 1 1 d k - d k 1 - 1
529 528 3expa φ d B k 1 K if k = 1 d 1 1 d k - d k 1 - 1
530 277 eleq1d φ d B k 1 K if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 if k = 1 d 1 1 d k - d k 1 - 1
531 529 530 mpbird φ d B k 1 K if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
532 291 531 fsumzcl φ d B k = 1 K if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
533 532 zcnd φ d B k = 1 K if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
534 508 257 addcld φ d B N + K
535 534 466 subcld φ d B N + K - d K
536 533 535 508 addlsub φ d B k = 1 K if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 + N + K - d K = N k = 1 K if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 = N N + K - d K
537 520 536 mpbird φ d B k = 1 K if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 + N + K - d K = N
538 eqidd φ d B N = N
539 537 538 eqtrd φ d B k = 1 K if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 + N + K - d K = N
540 264 539 eqtrd φ d B k = 1 K + 1 - 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 + if K + 1 = K + 1 N + K - d K if K + 1 = 1 d 1 1 d K + 1 - d K + 1 - 1 - 1 = N
541 256 540 eqtrd φ d B k = 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 = N
542 233 541 eqtrd φ d B i = 1 K + 1 if i = K + 1 N + K - d K if i = 1 d 1 1 d i - d i 1 - 1 = N
543 219 542 eqtrd φ d B i = 1 K + 1 k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 i = N
544 201 543 jca φ d B k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 : 1 K + 1 0 i = 1 K + 1 k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 i = N
545 ovex 1 K + 1 V
546 545 mptex k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 V
547 feq1 g = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 g : 1 K + 1 0 k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 : 1 K + 1 0
548 simpl g = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 i 1 K + 1 g = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
549 548 fveq1d g = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 i 1 K + 1 g i = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 i
550 549 sumeq2dv g = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 i = 1 K + 1 g i = i = 1 K + 1 k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 i
551 550 eqeq1d g = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 i = 1 K + 1 g i = N i = 1 K + 1 k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 i = N
552 547 551 anbi12d g = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 g : 1 K + 1 0 i = 1 K + 1 g i = N k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 : 1 K + 1 0 i = 1 K + 1 k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 i = N
553 546 552 elab k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 g | g : 1 K + 1 0 i = 1 K + 1 g i = N k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 : 1 K + 1 0 i = 1 K + 1 k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 i = N
554 553 a1i φ d B k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 g | g : 1 K + 1 0 i = 1 K + 1 g i = N k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 : 1 K + 1 0 i = 1 K + 1 k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 i = N
555 544 554 mpbird φ d B k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 g | g : 1 K + 1 0 i = 1 K + 1 g i = N
556 5 a1i φ d B A = g | g : 1 K + 1 0 i = 1 K + 1 g i = N
557 556 eqcomd φ d B g | g : 1 K + 1 0 i = 1 K + 1 g i = N = A
558 555 557 eleqtrd φ d B k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 A
559 291 mptexd φ d B j 1 K j + l = 1 j k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 l V
560 34 40 558 559 fvmptd φ d B F k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 = j 1 K j + l = 1 j k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 l
561 eqidd φ d B j 1 K l 1 j k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 = k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1
562 simpr φ d B j 1 K l 1 j k = l k = l
563 562 eqeq1d φ d B j 1 K l 1 j k = l k = K + 1 l = K + 1
564 562 eqeq1d φ d B j 1 K l 1 j k = l k = 1 l = 1
565 562 fveq2d φ d B j 1 K l 1 j k = l d k = d l
566 562 oveq1d φ d B j 1 K l 1 j k = l k 1 = l 1
567 566 fveq2d φ d B j 1 K l 1 j k = l d k 1 = d l 1
568 565 567 oveq12d φ d B j 1 K l 1 j k = l d k d k 1 = d l d l 1
569 568 oveq1d φ d B j 1 K l 1 j k = l d k - d k 1 - 1 = d l - d l 1 - 1
570 564 569 ifbieq2d φ d B j 1 K l 1 j k = l if k = 1 d 1 1 d k - d k 1 - 1 = if l = 1 d 1 1 d l - d l 1 - 1
571 563 570 ifbieq2d φ d B j 1 K l 1 j k = l if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 = if l = K + 1 N + K - d K if l = 1 d 1 1 d l - d l 1 - 1
572 1zzd φ d B j 1 K l 1 j 1
573 60 3ad2ant1 φ d B j 1 K K
574 573 adantr φ d B j 1 K l 1 j K
575 574 peano2zd φ d B j 1 K l 1 j K + 1
576 elfzelz l 1 j l
577 576 adantl φ d B j 1 K l 1 j l
578 elfzle1 l 1 j 1 l
579 578 adantl φ d B j 1 K l 1 j 1 l
580 577 zred φ d B j 1 K l 1 j l
581 simp3 φ d B j 1 K j 1 K
582 elfznn j 1 K j
583 581 582 syl φ d B j 1 K j
584 583 nnred φ d B j 1 K j
585 584 adantr φ d B j 1 K l 1 j j
586 575 zred φ d B j 1 K l 1 j K + 1
587 elfzle2 l 1 j l j
588 587 adantl φ d B j 1 K l 1 j l j
589 64 3ad2ant1 φ d B j 1 K K
590 1red φ d B j 1 K 1
591 589 590 readdcld φ d B j 1 K K + 1
592 elfzle2 j 1 K j K
593 581 592 syl φ d B j 1 K j K
594 589 lep1d φ d B j 1 K K K + 1
595 584 589 591 593 594 letrd φ d B j 1 K j K + 1
596 595 adantr φ d B j 1 K l 1 j j K + 1
597 580 585 586 588 596 letrd φ d B j 1 K l 1 j l K + 1
598 572 575 577 579 597 elfzd φ d B j 1 K l 1 j l 1 K + 1
599 ovexd φ d B j 1 K l 1 j N + K - d K V
600 ovexd φ d B j 1 K l 1 j d 1 1 V
601 ovexd φ d B j 1 K l 1 j d l - d l 1 - 1 V
602 600 601 ifcld φ d B j 1 K l 1 j if l = 1 d 1 1 d l - d l 1 - 1 V
603 599 602 ifcld φ d B j 1 K l 1 j if l = K + 1 N + K - d K if l = 1 d 1 1 d l - d l 1 - 1 V
604 561 571 598 603 fvmptd φ d B j 1 K l 1 j k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 l = if l = K + 1 N + K - d K if l = 1 d 1 1 d l - d l 1 - 1
605 604 sumeq2dv φ d B j 1 K l = 1 j k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 l = l = 1 j if l = K + 1 N + K - d K if l = 1 d 1 1 d l - d l 1 - 1
606 605 oveq2d φ d B j 1 K j + l = 1 j k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 l = j + l = 1 j if l = K + 1 N + K - d K if l = 1 d 1 1 d l - d l 1 - 1
607 elfznn l 1 j l
608 607 adantl φ d B j 1 K l 1 j l
609 608 nnred φ d B j 1 K l 1 j l
610 589 adantr φ d B j 1 K l 1 j K
611 1red φ d B j 1 K l 1 j 1
612 610 611 readdcld φ d B j 1 K l 1 j K + 1
613 583 adantr φ d B j 1 K l 1 j j
614 613 nnred φ d B j 1 K l 1 j j
615 593 adantr φ d B j 1 K l 1 j j K
616 609 614 610 588 615 letrd φ d B j 1 K l 1 j l K
617 610 ltp1d φ d B j 1 K l 1 j K < K + 1
618 609 610 612 616 617 lelttrd φ d B j 1 K l 1 j l < K + 1
619 609 618 ltned φ d B j 1 K l 1 j l K + 1
620 619 neneqd φ d B j 1 K l 1 j ¬ l = K + 1
621 620 iffalsed φ d B j 1 K l 1 j if l = K + 1 N + K - d K if l = 1 d 1 1 d l - d l 1 - 1 = if l = 1 d 1 1 d l - d l 1 - 1
622 621 sumeq2dv φ d B j 1 K l = 1 j if l = K + 1 N + K - d K if l = 1 d 1 1 d l - d l 1 - 1 = l = 1 j if l = 1 d 1 1 d l - d l 1 - 1
623 622 oveq2d φ d B j 1 K j + l = 1 j if l = K + 1 N + K - d K if l = 1 d 1 1 d l - d l 1 - 1 = j + l = 1 j if l = 1 d 1 1 d l - d l 1 - 1
624 583 nnge1d φ d B j 1 K 1 j
625 57 3ad2ant1 φ d B j 1 K 1
626 583 nnzd φ d B j 1 K j
627 eluz 1 j j 1 1 j
628 625 626 627 syl2anc φ d B j 1 K j 1 1 j
629 624 628 mpbird φ d B j 1 K j 1
630 eleq1 d 1 1 = if l = 1 d 1 1 d l - d l 1 - 1 d 1 1 if l = 1 d 1 1 d l - d l 1 - 1
631 eleq1 d l - d l 1 - 1 = if l = 1 d 1 1 d l - d l 1 - 1 d l - d l 1 - 1 if l = 1 d 1 1 d l - d l 1 - 1
632 56 3adant3 φ d B j 1 K d : 1 K 1 N + K
633 simp1 φ d B j 1 K φ
634 633 62 syl φ d B j 1 K 1 K
635 633 60 syl φ d B j 1 K K
636 eluz 1 K K 1 1 K
637 625 635 636 syl2anc φ d B j 1 K K 1 1 K
638 634 637 mpbird φ d B j 1 K K 1
639 eluzfz1 K 1 1 1 K
640 638 639 syl φ d B j 1 K 1 1 K
641 632 640 ffvelrnd φ d B j 1 K d 1 1 N + K
642 641 90 syl φ d B j 1 K d 1
643 642 nnzd φ d B j 1 K d 1
644 643 625 zsubcld φ d B j 1 K d 1 1
645 644 zcnd φ d B j 1 K d 1 1
646 645 adantr φ d B j 1 K l 1 j d 1 1
647 646 adantr φ d B j 1 K l 1 j l = 1 d 1 1
648 632 adantr φ d B j 1 K l 1 j d : 1 K 1 N + K
649 635 adantr φ d B j 1 K l 1 j K
650 608 nnzd φ d B j 1 K l 1 j l
651 608 nnge1d φ d B j 1 K l 1 j 1 l
652 572 649 650 651 616 elfzd φ d B j 1 K l 1 j l 1 K
653 648 652 ffvelrnd φ d B j 1 K l 1 j d l 1 N + K
654 elfzelz d l 1 N + K d l
655 653 654 syl φ d B j 1 K l 1 j d l
656 655 adantr φ d B j 1 K l 1 j ¬ l = 1 d l
657 648 adantr φ d B j 1 K l 1 j ¬ l = 1 d : 1 K 1 N + K
658 1zzd φ d B j 1 K l 1 j ¬ l = 1 1
659 649 adantr φ d B j 1 K l 1 j ¬ l = 1 K
660 650 adantr φ d B j 1 K l 1 j ¬ l = 1 l
661 660 658 zsubcld φ d B j 1 K l 1 j ¬ l = 1 l 1
662 neqne ¬ l = 1 l 1
663 662 adantl φ d B j 1 K l 1 j ¬ l = 1 l 1
664 611 adantr φ d B j 1 K l 1 j ¬ l = 1 1
665 609 adantr φ d B j 1 K l 1 j ¬ l = 1 l
666 651 adantr φ d B j 1 K l 1 j ¬ l = 1 1 l
667 664 665 666 leltned φ d B j 1 K l 1 j ¬ l = 1 1 < l l 1
668 663 667 mpbird φ d B j 1 K l 1 j ¬ l = 1 1 < l
669 658 660 zltlem1d φ d B j 1 K l 1 j ¬ l = 1 1 < l 1 l 1
670 668 669 mpbid φ d B j 1 K l 1 j ¬ l = 1 1 l 1
671 661 zred φ d B j 1 K l 1 j ¬ l = 1 l 1
672 610 adantr φ d B j 1 K l 1 j ¬ l = 1 K
673 665 lem1d φ d B j 1 K l 1 j ¬ l = 1 l 1 l
674 616 adantr φ d B j 1 K l 1 j ¬ l = 1 l K
675 671 665 672 673 674 letrd φ d B j 1 K l 1 j ¬ l = 1 l 1 K
676 658 659 661 670 675 elfzd φ d B j 1 K l 1 j ¬ l = 1 l 1 1 K
677 657 676 ffvelrnd φ d B j 1 K l 1 j ¬ l = 1 d l 1 1 N + K
678 elfzelz d l 1 1 N + K d l 1
679 677 678 syl φ d B j 1 K l 1 j ¬ l = 1 d l 1
680 656 679 zsubcld φ d B j 1 K l 1 j ¬ l = 1 d l d l 1
681 680 658 zsubcld φ d B j 1 K l 1 j ¬ l = 1 d l - d l 1 - 1
682 681 zcnd φ d B j 1 K l 1 j ¬ l = 1 d l - d l 1 - 1
683 630 631 647 682 ifbothda φ d B j 1 K l 1 j if l = 1 d 1 1 d l - d l 1 - 1
684 iftrue l = 1 if l = 1 d 1 1 d l - d l 1 - 1 = d 1 1
685 629 683 684 fsum1p φ d B j 1 K l = 1 j if l = 1 d 1 1 d l - d l 1 - 1 = d 1 - 1 + l = 1 + 1 j if l = 1 d 1 1 d l - d l 1 - 1
686 685 oveq2d φ d B j 1 K j + l = 1 j if l = 1 d 1 1 d l - d l 1 - 1 = j + d 1 1 + l = 1 + 1 j if l = 1 d 1 1 d l - d l 1 - 1
687 633 137 syl φ d B j 1 K 1
688 687 adantr φ d B j 1 K l 1 + 1 j 1
689 688 688 readdcld φ d B j 1 K l 1 + 1 j 1 + 1
690 elfzelz l 1 + 1 j l
691 690 adantl φ d B j 1 K l 1 + 1 j l
692 691 zred φ d B j 1 K l 1 + 1 j l
693 688 ltp1d φ d B j 1 K l 1 + 1 j 1 < 1 + 1
694 elfzle1 l 1 + 1 j 1 + 1 l
695 694 adantl φ d B j 1 K l 1 + 1 j 1 + 1 l
696 688 689 692 693 695 ltletrd φ d B j 1 K l 1 + 1 j 1 < l
697 688 696 ltned φ d B j 1 K l 1 + 1 j 1 l
698 697 necomd φ d B j 1 K l 1 + 1 j l 1
699 698 neneqd φ d B j 1 K l 1 + 1 j ¬ l = 1
700 699 iffalsed φ d B j 1 K l 1 + 1 j if l = 1 d 1 1 d l - d l 1 - 1 = d l - d l 1 - 1
701 700 sumeq2dv φ d B j 1 K l = 1 + 1 j if l = 1 d 1 1 d l - d l 1 - 1 = l = 1 + 1 j d l - d l 1 - 1
702 701 oveq2d φ d B j 1 K d 1 - 1 + l = 1 + 1 j if l = 1 d 1 1 d l - d l 1 - 1 = d 1 - 1 + l = 1 + 1 j d l - d l 1 - 1
703 702 oveq2d φ d B j 1 K j + d 1 1 + l = 1 + 1 j if l = 1 d 1 1 d l - d l 1 - 1 = j + d 1 1 + l = 1 + 1 j d l - d l 1 - 1
704 fzfid φ d B j 1 K 1 + 1 j Fin
705 632 adantr φ d B j 1 K l 1 + 1 j d : 1 K 1 N + K
706 1zzd φ d B j 1 K l 1 + 1 j 1
707 635 adantr φ d B j 1 K l 1 + 1 j K
708 688 689 693 ltled φ d B j 1 K l 1 + 1 j 1 1 + 1
709 688 689 692 708 695 letrd φ d B j 1 K l 1 + 1 j 1 l
710 584 adantr φ d B j 1 K l 1 + 1 j j
711 589 adantr φ d B j 1 K l 1 + 1 j K
712 elfzle2 l 1 + 1 j l j
713 712 adantl φ d B j 1 K l 1 + 1 j l j
714 593 adantr φ d B j 1 K l 1 + 1 j j K
715 692 710 711 713 714 letrd φ d B j 1 K l 1 + 1 j l K
716 706 707 691 709 715 elfzd φ d B j 1 K l 1 + 1 j l 1 K
717 705 716 ffvelrnd φ d B j 1 K l 1 + 1 j d l 1 N + K
718 717 654 syl φ d B j 1 K l 1 + 1 j d l
719 718 zcnd φ d B j 1 K l 1 + 1 j d l
720 691 706 zsubcld φ d B j 1 K l 1 + 1 j l 1
721 leaddsub 1 1 l 1 + 1 l 1 l 1
722 688 688 692 721 syl3anc φ d B j 1 K l 1 + 1 j 1 + 1 l 1 l 1
723 695 722 mpbid φ d B j 1 K l 1 + 1 j 1 l 1
724 692 688 resubcld φ d B j 1 K l 1 + 1 j l 1
725 692 lem1d φ d B j 1 K l 1 + 1 j l 1 l
726 724 692 711 725 715 letrd φ d B j 1 K l 1 + 1 j l 1 K
727 706 707 720 723 726 elfzd φ d B j 1 K l 1 + 1 j l 1 1 K
728 705 727 ffvelrnd φ d B j 1 K l 1 + 1 j d l 1 1 N + K
729 678 zcnd d l 1 1 N + K d l 1
730 728 729 syl φ d B j 1 K l 1 + 1 j d l 1
731 719 730 subcld φ d B j 1 K l 1 + 1 j d l d l 1
732 1cnd φ d B j 1 K l 1 + 1 j 1
733 704 731 732 fsumsub φ d B j 1 K l = 1 + 1 j d l - d l 1 - 1 = l = 1 + 1 j d l d l 1 l = 1 + 1 j 1
734 733 oveq2d φ d B j 1 K d 1 - 1 + l = 1 + 1 j d l - d l 1 - 1 = d 1 1 + l = 1 + 1 j d l d l 1 - l = 1 + 1 j 1
735 734 oveq2d φ d B j 1 K j + d 1 1 + l = 1 + 1 j d l - d l 1 - 1 = j + d 1 1 + l = 1 + 1 j d l d l 1 l = 1 + 1 j 1
736 1cnd φ d B j 1 K 1
737 fsumconst 1 + 1 j Fin 1 l = 1 + 1 j 1 = 1 + 1 j 1
738 704 736 737 syl2anc φ d B j 1 K l = 1 + 1 j 1 = 1 + 1 j 1
739 hashfzp1 j 1 1 + 1 j = j 1
740 629 739 syl φ d B j 1 K 1 + 1 j = j 1
741 740 oveq1d φ d B j 1 K 1 + 1 j 1 = j 1 1
742 583 nncnd φ d B j 1 K j
743 742 736 subcld φ d B j 1 K j 1
744 743 mulid1d φ d B j 1 K j 1 1 = j 1
745 741 744 eqtrd φ d B j 1 K 1 + 1 j 1 = j 1
746 738 745 eqtrd φ d B j 1 K l = 1 + 1 j 1 = j 1
747 746 oveq2d φ d B j 1 K l = 1 + 1 j d l d l 1 l = 1 + 1 j 1 = l = 1 + 1 j d l d l 1 j 1
748 747 oveq2d φ d B j 1 K d 1 1 + l = 1 + 1 j d l d l 1 - l = 1 + 1 j 1 = d 1 1 + l = 1 + 1 j d l d l 1 - j 1
749 748 oveq2d φ d B j 1 K j + d 1 1 + l = 1 + 1 j d l d l 1 l = 1 + 1 j 1 = j + d 1 1 + l = 1 + 1 j d l d l 1 j 1
750 704 731 fsumcl φ d B j 1 K l = 1 + 1 j d l d l 1
751 645 750 743 addsubassd φ d B j 1 K d 1 1 + l = 1 + 1 j d l d l 1 - j 1 = d 1 1 + l = 1 + 1 j d l d l 1 - j 1
752 751 eqcomd φ d B j 1 K d 1 1 + l = 1 + 1 j d l d l 1 - j 1 = d 1 1 + l = 1 + 1 j d l d l 1 - j 1
753 752 oveq2d φ d B j 1 K j + d 1 1 + l = 1 + 1 j d l d l 1 j 1 = j + d 1 - 1 + l = 1 + 1 j d l d l 1 - j 1
754 645 750 addcld φ d B j 1 K d 1 - 1 + l = 1 + 1 j d l d l 1
755 742 754 743 addsubassd φ d B j 1 K j + d 1 - 1 + l = 1 + 1 j d l d l 1 - j 1 = j + d 1 - 1 + l = 1 + 1 j d l d l 1 - j 1
756 755 eqcomd φ d B j 1 K j + d 1 - 1 + l = 1 + 1 j d l d l 1 - j 1 = j + d 1 - 1 + l = 1 + 1 j d l d l 1 - j 1
757 742 754 743 addsubd φ d B j 1 K j + d 1 - 1 + l = 1 + 1 j d l d l 1 - j 1 = j j 1 + d 1 1 + l = 1 + 1 j d l d l 1
758 742 736 nncand φ d B j 1 K j j 1 = 1
759 1zzd φ d B j 1 K 1
760 626 625 zsubcld φ d B j 1 K j 1
761 632 adantr φ d B j 1 K l 1 j 1 d : 1 K 1 N + K
762 1zzd φ d B j 1 K l 1 j 1 1
763 635 adantr φ d B j 1 K l 1 j 1 K
764 elfzelz l 1 j 1 l
765 764 adantl φ d B j 1 K l 1 j 1 l
766 765 peano2zd φ d B j 1 K l 1 j 1 l + 1
767 1red φ d B j 1 K l 1 j 1 1
768 765 zred φ d B j 1 K l 1 j 1 l
769 768 767 readdcld φ d B j 1 K l 1 j 1 l + 1
770 elfzle1 l 1 j 1 1 l
771 770 adantl φ d B j 1 K l 1 j 1 1 l
772 768 lep1d φ d B j 1 K l 1 j 1 l l + 1
773 767 768 769 771 772 letrd φ d B j 1 K l 1 j 1 1 l + 1
774 584 adantr φ d B j 1 K l 1 j 1 j
775 774 767 resubcld φ d B j 1 K l 1 j 1 j 1
776 589 adantr φ d B j 1 K l 1 j 1 K
777 776 767 resubcld φ d B j 1 K l 1 j 1 K 1
778 elfzle2 l 1 j 1 l j 1
779 778 adantl φ d B j 1 K l 1 j 1 l j 1
780 593 adantr φ d B j 1 K l 1 j 1 j K
781 774 776 767 780 lesub1dd φ d B j 1 K l 1 j 1 j 1 K 1
782 768 775 777 779 781 letrd φ d B j 1 K l 1 j 1 l K 1
783 leaddsub l 1 K l + 1 K l K 1
784 768 767 776 783 syl3anc φ d B j 1 K l 1 j 1 l + 1 K l K 1
785 782 784 mpbird φ d B j 1 K l 1 j 1 l + 1 K
786 762 763 766 773 785 elfzd φ d B j 1 K l 1 j 1 l + 1 1 K
787 761 786 ffvelrnd φ d B j 1 K l 1 j 1 d l + 1 1 N + K
788 elfzelz d l + 1 1 N + K d l + 1
789 787 788 syl φ d B j 1 K l 1 j 1 d l + 1
790 584 687 resubcld φ d B j 1 K j 1
791 584 lem1d φ d B j 1 K j 1 j
792 790 584 589 791 593 letrd φ d B j 1 K j 1 K
793 792 adantr φ d B j 1 K l 1 j 1 j 1 K
794 768 775 776 779 793 letrd φ d B j 1 K l 1 j 1 l K
795 762 763 765 771 794 elfzd φ d B j 1 K l 1 j 1 l 1 K
796 761 795 ffvelrnd φ d B j 1 K l 1 j 1 d l 1 N + K
797 796 654 syl φ d B j 1 K l 1 j 1 d l
798 789 797 zsubcld φ d B j 1 K l 1 j 1 d l + 1 d l
799 798 zcnd φ d B j 1 K l 1 j 1 d l + 1 d l
800 fvoveq1 l = w 1 d l + 1 = d w - 1 + 1
801 fveq2 l = w 1 d l = d w 1
802 800 801 oveq12d l = w 1 d l + 1 d l = d w - 1 + 1 d w 1
803 759 759 760 799 802 fsumshft φ d B j 1 K l = 1 j 1 d l + 1 d l = w = 1 + 1 j - 1 + 1 d w - 1 + 1 d w 1
804 oveq1 w = l w 1 = l 1
805 804 fvoveq1d w = l d w - 1 + 1 = d l - 1 + 1
806 804 fveq2d w = l d w 1 = d l 1
807 805 806 oveq12d w = l d w - 1 + 1 d w 1 = d l - 1 + 1 d l 1
808 nfcv _ l 1 + 1 j - 1 + 1
809 nfcv _ w 1 + 1 j - 1 + 1
810 nfcv _ l d w - 1 + 1 d w 1
811 nfcv _ w d l - 1 + 1 d l 1
812 807 808 809 810 811 cbvsum w = 1 + 1 j - 1 + 1 d w - 1 + 1 d w 1 = l = 1 + 1 j - 1 + 1 d l - 1 + 1 d l 1
813 812 a1i φ d B j 1 K w = 1 + 1 j - 1 + 1 d w - 1 + 1 d w 1 = l = 1 + 1 j - 1 + 1 d l - 1 + 1 d l 1
814 803 813 eqtrd φ d B j 1 K l = 1 j 1 d l + 1 d l = l = 1 + 1 j - 1 + 1 d l - 1 + 1 d l 1
815 742 736 npcand φ d B j 1 K j - 1 + 1 = j
816 815 oveq2d φ d B j 1 K 1 + 1 j - 1 + 1 = 1 + 1 j
817 816 sumeq1d φ d B j 1 K l = 1 + 1 j - 1 + 1 d l - 1 + 1 d l 1 = l = 1 + 1 j d l - 1 + 1 d l 1
818 692 recnd φ d B j 1 K l 1 + 1 j l
819 818 732 npcand φ d B j 1 K l 1 + 1 j l - 1 + 1 = l
820 819 fveq2d φ d B j 1 K l 1 + 1 j d l - 1 + 1 = d l
821 820 oveq1d φ d B j 1 K l 1 + 1 j d l - 1 + 1 d l 1 = d l d l 1
822 821 sumeq2dv φ d B j 1 K l = 1 + 1 j d l - 1 + 1 d l 1 = l = 1 + 1 j d l d l 1
823 817 822 eqtrd φ d B j 1 K l = 1 + 1 j - 1 + 1 d l - 1 + 1 d l 1 = l = 1 + 1 j d l d l 1
824 814 823 eqtrd φ d B j 1 K l = 1 j 1 d l + 1 d l = l = 1 + 1 j d l d l 1
825 824 eqcomd φ d B j 1 K l = 1 + 1 j d l d l 1 = l = 1 j 1 d l + 1 d l
826 825 oveq2d φ d B j 1 K d 1 - 1 + l = 1 + 1 j d l d l 1 = d 1 - 1 + l = 1 j 1 d l + 1 d l
827 758 826 oveq12d φ d B j 1 K j j 1 + d 1 1 + l = 1 + 1 j d l d l 1 = 1 + d 1 1 + l = 1 j 1 d l + 1 d l
828 fveq2 r = l d r = d l
829 fveq2 r = l + 1 d r = d l + 1
830 fveq2 r = 1 d r = d 1
831 fveq2 r = j - 1 + 1 d r = d j - 1 + 1
832 815 629 eqeltrd φ d B j 1 K j - 1 + 1 1
833 632 adantr φ d B j 1 K r 1 j - 1 + 1 d : 1 K 1 N + K
834 1zzd φ d B j 1 K r 1 j - 1 + 1 1
835 635 adantr φ d B j 1 K r 1 j - 1 + 1 K
836 elfzelz r 1 j - 1 + 1 r
837 836 adantl φ d B j 1 K r 1 j - 1 + 1 r
838 elfzle1 r 1 j - 1 + 1 1 r
839 838 adantl φ d B j 1 K r 1 j - 1 + 1 1 r
840 837 zred φ d B j 1 K r 1 j - 1 + 1 r
841 584 adantr φ d B j 1 K r 1 j - 1 + 1 j
842 1red φ d B j 1 K r 1 j - 1 + 1 1
843 841 842 resubcld φ d B j 1 K r 1 j - 1 + 1 j 1
844 843 842 readdcld φ d B j 1 K r 1 j - 1 + 1 j - 1 + 1
845 589 adantr φ d B j 1 K r 1 j - 1 + 1 K
846 elfzle2 r 1 j - 1 + 1 r j - 1 + 1
847 846 adantl φ d B j 1 K r 1 j - 1 + 1 r j - 1 + 1
848 815 593 eqbrtrd φ d B j 1 K j - 1 + 1 K
849 848 adantr φ d B j 1 K r 1 j - 1 + 1 j - 1 + 1 K
850 840 844 845 847 849 letrd φ d B j 1 K r 1 j - 1 + 1 r K
851 834 835 837 839 850 elfzd φ d B j 1 K r 1 j - 1 + 1 r 1 K
852 833 851 ffvelrnd φ d B j 1 K r 1 j - 1 + 1 d r 1 N + K
853 elfzelz d r 1 N + K d r
854 852 853 syl φ d B j 1 K r 1 j - 1 + 1 d r
855 854 zcnd φ d B j 1 K r 1 j - 1 + 1 d r
856 828 829 830 831 760 832 855 telfsum2 φ d B j 1 K l = 1 j 1 d l + 1 d l = d j - 1 + 1 d 1
857 856 oveq2d φ d B j 1 K d 1 - 1 + l = 1 j 1 d l + 1 d l = d 1 1 + d j - 1 + 1 - d 1
858 857 oveq2d φ d B j 1 K 1 + d 1 1 + l = 1 j 1 d l + 1 d l = 1 + d 1 1 + d j - 1 + 1 d 1
859 815 fveq2d φ d B j 1 K d j - 1 + 1 = d j
860 632 581 ffvelrnd φ d B j 1 K d j 1 N + K
861 elfzelz d j 1 N + K d j
862 860 861 syl φ d B j 1 K d j
863 859 862 eqeltrd φ d B j 1 K d j - 1 + 1
864 863 zcnd φ d B j 1 K d j - 1 + 1
865 642 nnred φ d B j 1 K d 1
866 865 recnd φ d B j 1 K d 1
867 864 866 subcld φ d B j 1 K d j - 1 + 1 d 1
868 736 645 867 addassd φ d B j 1 K 1 + d 1 1 + d j - 1 + 1 d 1 = 1 + d 1 1 + d j - 1 + 1 d 1
869 868 eqcomd φ d B j 1 K 1 + d 1 1 + d j - 1 + 1 d 1 = 1 + d 1 1 + d j - 1 + 1 d 1
870 736 866 pncan3d φ d B j 1 K 1 + d 1 - 1 = d 1
871 870 oveq1d φ d B j 1 K 1 + d 1 1 + d j - 1 + 1 d 1 = d 1 + d j - 1 + 1 - d 1
872 866 864 pncan3d φ d B j 1 K d 1 + d j - 1 + 1 - d 1 = d j - 1 + 1
873 872 859 eqtrd φ d B j 1 K d 1 + d j - 1 + 1 - d 1 = d j
874 871 873 eqtrd φ d B j 1 K 1 + d 1 1 + d j - 1 + 1 d 1 = d j
875 869 874 eqtrd φ d B j 1 K 1 + d 1 1 + d j - 1 + 1 d 1 = d j
876 858 875 eqtrd φ d B j 1 K 1 + d 1 1 + l = 1 j 1 d l + 1 d l = d j
877 827 876 eqtrd φ d B j 1 K j j 1 + d 1 1 + l = 1 + 1 j d l d l 1 = d j
878 757 877 eqtrd φ d B j 1 K j + d 1 - 1 + l = 1 + 1 j d l d l 1 - j 1 = d j
879 756 878 eqtrd φ d B j 1 K j + d 1 - 1 + l = 1 + 1 j d l d l 1 - j 1 = d j
880 753 879 eqtrd φ d B j 1 K j + d 1 1 + l = 1 + 1 j d l d l 1 j 1 = d j
881 749 880 eqtrd φ d B j 1 K j + d 1 1 + l = 1 + 1 j d l d l 1 l = 1 + 1 j 1 = d j
882 735 881 eqtrd φ d B j 1 K j + d 1 1 + l = 1 + 1 j d l - d l 1 - 1 = d j
883 703 882 eqtrd φ d B j 1 K j + d 1 1 + l = 1 + 1 j if l = 1 d 1 1 d l - d l 1 - 1 = d j
884 686 883 eqtrd φ d B j 1 K j + l = 1 j if l = 1 d 1 1 d l - d l 1 - 1 = d j
885 623 884 eqtrd φ d B j 1 K j + l = 1 j if l = K + 1 N + K - d K if l = 1 d 1 1 d l - d l 1 - 1 = d j
886 606 885 eqtrd φ d B j 1 K j + l = 1 j k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 l = d j
887 886 3expa φ d B j 1 K j + l = 1 j k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 l = d j
888 887 mpteq2dva φ d B j 1 K j + l = 1 j k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 l = j 1 K d j
889 nfcv _ q d j
890 nfcv _ j d q
891 fveq2 j = q d j = d q
892 889 890 891 cbvmpt j 1 K d j = q 1 K d q
893 892 a1i φ d B j 1 K d j = q 1 K d q
894 888 893 eqtrd φ d B j 1 K j + l = 1 j k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 l = q 1 K d q
895 560 894 eqtrd φ d B F k 1 K + 1 if k = K + 1 N + K - d K if k = 1 d 1 1 d k - d k 1 - 1 = q 1 K d q
896 33 895 eqtrd φ d B F G d = q 1 K d q
897 56 ffnd φ d B d Fn 1 K
898 dffn5 d Fn 1 K d = q 1 K d q
899 898 biimpi d Fn 1 K d = q 1 K d q
900 897 899 syl φ d B d = q 1 K d q
901 900 eqcomd φ d B q 1 K d q = d
902 896 901 eqtrd φ d B F G d = d
903 902 ralrimiva φ d B F G d = d