Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones12a.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
2 |
|
sticksstones12a.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
3 |
|
sticksstones12a.3 |
⊢ 𝐹 = ( 𝑎 ∈ 𝐴 ↦ ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ) |
4 |
|
sticksstones12a.4 |
⊢ 𝐺 = ( 𝑏 ∈ 𝐵 ↦ if ( 𝐾 = 0 , { 〈 1 , 𝑁 〉 } , ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) ) |
5 |
|
sticksstones12a.5 |
⊢ 𝐴 = { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } |
6 |
|
sticksstones12a.6 |
⊢ 𝐵 = { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) } |
7 |
4
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝐺 = ( 𝑏 ∈ 𝐵 ↦ if ( 𝐾 = 0 , { 〈 1 , 𝑁 〉 } , ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) ) ) |
8 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
9 |
2
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝐾 ) |
10 |
8 9
|
ltned |
⊢ ( 𝜑 → 0 ≠ 𝐾 ) |
11 |
10
|
necomd |
⊢ ( 𝜑 → 𝐾 ≠ 0 ) |
12 |
11
|
neneqd |
⊢ ( 𝜑 → ¬ 𝐾 = 0 ) |
13 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑏 = 𝑑 ) → ¬ 𝐾 = 0 ) |
14 |
13
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑏 = 𝑑 ) → if ( 𝐾 = 0 , { 〈 1 , 𝑁 〉 } , ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) |
15 |
|
fveq1 |
⊢ ( 𝑏 = 𝑑 → ( 𝑏 ‘ 𝐾 ) = ( 𝑑 ‘ 𝐾 ) ) |
16 |
15
|
oveq2d |
⊢ ( 𝑏 = 𝑑 → ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) = ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ) |
17 |
|
fveq1 |
⊢ ( 𝑏 = 𝑑 → ( 𝑏 ‘ 1 ) = ( 𝑑 ‘ 1 ) ) |
18 |
17
|
oveq1d |
⊢ ( 𝑏 = 𝑑 → ( ( 𝑏 ‘ 1 ) − 1 ) = ( ( 𝑑 ‘ 1 ) − 1 ) ) |
19 |
|
fveq1 |
⊢ ( 𝑏 = 𝑑 → ( 𝑏 ‘ 𝑘 ) = ( 𝑑 ‘ 𝑘 ) ) |
20 |
|
fveq1 |
⊢ ( 𝑏 = 𝑑 → ( 𝑏 ‘ ( 𝑘 − 1 ) ) = ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) |
21 |
19 20
|
oveq12d |
⊢ ( 𝑏 = 𝑑 → ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) = ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) |
22 |
21
|
oveq1d |
⊢ ( 𝑏 = 𝑑 → ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) = ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) |
23 |
18 22
|
ifeq12d |
⊢ ( 𝑏 = 𝑑 → if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) |
24 |
16 23
|
ifeq12d |
⊢ ( 𝑏 = 𝑑 → if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) |
25 |
24
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑏 = 𝑑 ) → if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) |
26 |
25
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑏 = 𝑑 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) |
27 |
26
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑏 = 𝑑 ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) |
28 |
14 27
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑏 = 𝑑 ) → if ( 𝐾 = 0 , { 〈 1 , 𝑁 〉 } , ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) |
29 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝑑 ∈ 𝐵 ) |
30 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 1 ... ( 𝐾 + 1 ) ) ∈ Fin ) |
31 |
30
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ∈ V ) |
32 |
7 28 29 31
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑑 ) = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) |
33 |
32
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑑 ) ) = ( 𝐹 ‘ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) ) |
34 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝐹 = ( 𝑎 ∈ 𝐴 ↦ ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ) ) |
35 |
|
simpll |
⊢ ( ( ( 𝑎 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑎 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) |
36 |
35
|
fveq1d |
⊢ ( ( ( 𝑎 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → ( 𝑎 ‘ 𝑙 ) = ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑙 ) ) |
37 |
36
|
sumeq2dv |
⊢ ( ( 𝑎 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) = Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑙 ) ) |
38 |
37
|
oveq2d |
⊢ ( ( 𝑎 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) = ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑙 ) ) ) |
39 |
38
|
mpteq2dva |
⊢ ( 𝑎 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑙 ) ) ) ) |
40 |
39
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑎 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑙 ) ) ) ) |
41 |
|
eleq1 |
⊢ ( ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) = if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) → ( ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ∈ ℕ0 ↔ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ∈ ℕ0 ) ) |
42 |
|
eleq1 |
⊢ ( if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) → ( if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ∈ ℕ0 ↔ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ∈ ℕ0 ) ) |
43 |
6
|
eleq2i |
⊢ ( 𝑑 ∈ 𝐵 ↔ 𝑑 ∈ { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) } ) |
44 |
|
vex |
⊢ 𝑑 ∈ V |
45 |
|
feq1 |
⊢ ( 𝑓 = 𝑑 → ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ↔ 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) ) |
46 |
|
fveq1 |
⊢ ( 𝑓 = 𝑑 → ( 𝑓 ‘ 𝑥 ) = ( 𝑑 ‘ 𝑥 ) ) |
47 |
|
fveq1 |
⊢ ( 𝑓 = 𝑑 → ( 𝑓 ‘ 𝑦 ) = ( 𝑑 ‘ 𝑦 ) ) |
48 |
46 47
|
breq12d |
⊢ ( 𝑓 = 𝑑 → ( ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ↔ ( 𝑑 ‘ 𝑥 ) < ( 𝑑 ‘ 𝑦 ) ) ) |
49 |
48
|
imbi2d |
⊢ ( 𝑓 = 𝑑 → ( ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑥 < 𝑦 → ( 𝑑 ‘ 𝑥 ) < ( 𝑑 ‘ 𝑦 ) ) ) ) |
50 |
49
|
2ralbidv |
⊢ ( 𝑓 = 𝑑 → ( ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑑 ‘ 𝑥 ) < ( 𝑑 ‘ 𝑦 ) ) ) ) |
51 |
45 50
|
anbi12d |
⊢ ( 𝑓 = 𝑑 → ( ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑑 ‘ 𝑥 ) < ( 𝑑 ‘ 𝑦 ) ) ) ) ) |
52 |
44 51
|
elab |
⊢ ( 𝑑 ∈ { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) } ↔ ( 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑑 ‘ 𝑥 ) < ( 𝑑 ‘ 𝑦 ) ) ) ) |
53 |
43 52
|
bitri |
⊢ ( 𝑑 ∈ 𝐵 ↔ ( 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑑 ‘ 𝑥 ) < ( 𝑑 ‘ 𝑦 ) ) ) ) |
54 |
53
|
biimpi |
⊢ ( 𝑑 ∈ 𝐵 → ( 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑑 ‘ 𝑥 ) < ( 𝑑 ‘ 𝑦 ) ) ) ) |
55 |
54
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑑 ‘ 𝑥 ) < ( 𝑑 ‘ 𝑦 ) ) ) ) |
56 |
55
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
57 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 1 ∈ ℤ ) |
59 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
60 |
59
|
nn0zd |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
61 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝐾 ∈ ℤ ) |
62 |
2
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝐾 ) |
63 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 1 ≤ 𝐾 ) |
64 |
2
|
nnred |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
65 |
64
|
leidd |
⊢ ( 𝜑 → 𝐾 ≤ 𝐾 ) |
66 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝐾 ≤ 𝐾 ) |
67 |
58 61 61 63 66
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝐾 ∈ ( 1 ... 𝐾 ) ) |
68 |
56 67
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑑 ‘ 𝐾 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
69 |
|
elfzle2 |
⊢ ( ( 𝑑 ‘ 𝐾 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ 𝐾 ) ≤ ( 𝑁 + 𝐾 ) ) |
70 |
68 69
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑑 ‘ 𝐾 ) ≤ ( 𝑁 + 𝐾 ) ) |
71 |
70
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑑 ‘ 𝐾 ) ≤ ( 𝑁 + 𝐾 ) ) |
72 |
71
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝑑 ‘ 𝐾 ) ≤ ( 𝑁 + 𝐾 ) ) |
73 |
|
elfznn |
⊢ ( ( 𝑑 ‘ 𝐾 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ 𝐾 ) ∈ ℕ ) |
74 |
73
|
nnnn0d |
⊢ ( ( 𝑑 ‘ 𝐾 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ 𝐾 ) ∈ ℕ0 ) |
75 |
68 74
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑑 ‘ 𝐾 ) ∈ ℕ0 ) |
76 |
75
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑑 ‘ 𝐾 ) ∈ ℕ0 ) |
77 |
76
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝑑 ‘ 𝐾 ) ∈ ℕ0 ) |
78 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = ( 𝐾 + 1 ) ) → 𝑁 ∈ ℕ0 ) |
79 |
59
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = ( 𝐾 + 1 ) ) → 𝐾 ∈ ℕ0 ) |
80 |
78 79
|
nn0addcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝑁 + 𝐾 ) ∈ ℕ0 ) |
81 |
|
nn0sub |
⊢ ( ( ( 𝑑 ‘ 𝐾 ) ∈ ℕ0 ∧ ( 𝑁 + 𝐾 ) ∈ ℕ0 ) → ( ( 𝑑 ‘ 𝐾 ) ≤ ( 𝑁 + 𝐾 ) ↔ ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ∈ ℕ0 ) ) |
82 |
77 80 81
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = ( 𝐾 + 1 ) ) → ( ( 𝑑 ‘ 𝐾 ) ≤ ( 𝑁 + 𝐾 ) ↔ ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ∈ ℕ0 ) ) |
83 |
72 82
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = ( 𝐾 + 1 ) ) → ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ∈ ℕ0 ) |
84 |
|
eleq1 |
⊢ ( ( ( 𝑑 ‘ 1 ) − 1 ) = if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) → ( ( ( 𝑑 ‘ 1 ) − 1 ) ∈ ℕ0 ↔ if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ∈ ℕ0 ) ) |
85 |
|
eleq1 |
⊢ ( ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) = if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) → ( ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ∈ ℕ0 ↔ if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ∈ ℕ0 ) ) |
86 |
|
1le1 |
⊢ 1 ≤ 1 |
87 |
86
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 1 ≤ 1 ) |
88 |
58 61 58 87 63
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 1 ∈ ( 1 ... 𝐾 ) ) |
89 |
56 88
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑑 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
90 |
|
elfznn |
⊢ ( ( 𝑑 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ 1 ) ∈ ℕ ) |
91 |
89 90
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑑 ‘ 1 ) ∈ ℕ ) |
92 |
|
nnm1nn0 |
⊢ ( ( 𝑑 ‘ 1 ) ∈ ℕ → ( ( 𝑑 ‘ 1 ) − 1 ) ∈ ℕ0 ) |
93 |
91 92
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( ( 𝑑 ‘ 1 ) − 1 ) ∈ ℕ0 ) |
94 |
93
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( ( 𝑑 ‘ 1 ) − 1 ) ∈ ℕ0 ) |
95 |
94
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( ( 𝑑 ‘ 1 ) − 1 ) ∈ ℕ0 ) |
96 |
95
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ 𝑘 = 1 ) → ( ( 𝑑 ‘ 1 ) − 1 ) ∈ ℕ0 ) |
97 |
56
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
98 |
|
1zzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ∈ ℤ ) |
99 |
61
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝐾 ∈ ℤ ) |
100 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) → 𝑘 ∈ ℕ ) |
101 |
100
|
nnzd |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) → 𝑘 ∈ ℤ ) |
102 |
101
|
ad3antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ℤ ) |
103 |
|
elfzle1 |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) → 1 ≤ 𝑘 ) |
104 |
103
|
ad3antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ≤ 𝑘 ) |
105 |
|
neqne |
⊢ ( ¬ 𝑘 = ( 𝐾 + 1 ) → 𝑘 ≠ ( 𝐾 + 1 ) ) |
106 |
105
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 ≠ ( 𝐾 + 1 ) ) |
107 |
106
|
necomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝐾 + 1 ) ≠ 𝑘 ) |
108 |
100
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 ∈ ℕ ) |
109 |
108
|
nnred |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 ∈ ℝ ) |
110 |
64
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝐾 ∈ ℝ ) |
111 |
|
1red |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 1 ∈ ℝ ) |
112 |
110 111
|
readdcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝐾 + 1 ) ∈ ℝ ) |
113 |
|
elfzle2 |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) → 𝑘 ≤ ( 𝐾 + 1 ) ) |
114 |
113
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 ≤ ( 𝐾 + 1 ) ) |
115 |
109 112 114
|
leltned |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝑘 < ( 𝐾 + 1 ) ↔ ( 𝐾 + 1 ) ≠ 𝑘 ) ) |
116 |
107 115
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 < ( 𝐾 + 1 ) ) |
117 |
101
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 ∈ ℤ ) |
118 |
61
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝐾 ∈ ℤ ) |
119 |
|
zleltp1 |
⊢ ( ( 𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 𝑘 ≤ 𝐾 ↔ 𝑘 < ( 𝐾 + 1 ) ) ) |
120 |
117 118 119
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝑘 ≤ 𝐾 ↔ 𝑘 < ( 𝐾 + 1 ) ) ) |
121 |
116 120
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 ≤ 𝐾 ) |
122 |
121
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ≤ 𝐾 ) |
123 |
98 99 102 104 122
|
elfzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ( 1 ... 𝐾 ) ) |
124 |
97 123
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑑 ‘ 𝑘 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
125 |
|
elfznn |
⊢ ( ( 𝑑 ‘ 𝑘 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ 𝑘 ) ∈ ℕ ) |
126 |
125
|
nnzd |
⊢ ( ( 𝑑 ‘ 𝑘 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ 𝑘 ) ∈ ℤ ) |
127 |
124 126
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑑 ‘ 𝑘 ) ∈ ℤ ) |
128 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ∈ ℤ ) |
129 |
60
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = 1 ) → 𝐾 ∈ ℤ ) |
130 |
129
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝐾 ∈ ℤ ) |
131 |
101
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑘 ∈ ℤ ) |
132 |
131
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ℤ ) |
133 |
132
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ℤ ) |
134 |
133 128
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ∈ ℤ ) |
135 |
|
neqne |
⊢ ( ¬ 𝑘 = 1 → 𝑘 ≠ 1 ) |
136 |
135
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ≠ 1 ) |
137 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
138 |
137
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ∈ ℝ ) |
139 |
133
|
zred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ℝ ) |
140 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
141 |
140 103
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ≤ 𝑘 ) |
142 |
138 139 141
|
leltned |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 1 < 𝑘 ↔ 𝑘 ≠ 1 ) ) |
143 |
136 142
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 < 𝑘 ) |
144 |
128 133
|
zltp1led |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 1 < 𝑘 ↔ ( 1 + 1 ) ≤ 𝑘 ) ) |
145 |
143 144
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 1 + 1 ) ≤ 𝑘 ) |
146 |
|
leaddsub |
⊢ ( ( 1 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( ( 1 + 1 ) ≤ 𝑘 ↔ 1 ≤ ( 𝑘 − 1 ) ) ) |
147 |
138 138 139 146
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 1 + 1 ) ≤ 𝑘 ↔ 1 ≤ ( 𝑘 − 1 ) ) ) |
148 |
145 147
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ≤ ( 𝑘 − 1 ) ) |
149 |
134
|
zred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ∈ ℝ ) |
150 |
64
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝐾 ∈ ℝ ) |
151 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ∈ ℝ ) |
152 |
150 151
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝐾 + 1 ) ∈ ℝ ) |
153 |
152 151
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝐾 + 1 ) − 1 ) ∈ ℝ ) |
154 |
113
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ≤ ( 𝐾 + 1 ) ) |
155 |
139 152 151 154
|
lesub1dd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ≤ ( ( 𝐾 + 1 ) − 1 ) ) |
156 |
64
|
recnd |
⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
157 |
156
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝐾 ∈ ℂ ) |
158 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ∈ ℂ ) |
159 |
157 158
|
pncand |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝐾 + 1 ) − 1 ) = 𝐾 ) |
160 |
65
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝐾 ≤ 𝐾 ) |
161 |
159 160
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝐾 + 1 ) − 1 ) ≤ 𝐾 ) |
162 |
149 153 150 155 161
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ≤ 𝐾 ) |
163 |
128 130 134 148 162
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ∈ ( 1 ... 𝐾 ) ) |
164 |
163
|
ad5ant135 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ∈ ( 1 ... 𝐾 ) ) |
165 |
97 164
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑑 ‘ ( 𝑘 − 1 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
166 |
|
elfznn |
⊢ ( ( 𝑑 ‘ ( 𝑘 − 1 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ ( 𝑘 − 1 ) ) ∈ ℕ ) |
167 |
165 166
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑑 ‘ ( 𝑘 − 1 ) ) ∈ ℕ ) |
168 |
167
|
nnzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑑 ‘ ( 𝑘 − 1 ) ) ∈ ℤ ) |
169 |
127 168
|
zsubcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ∈ ℤ ) |
170 |
169 98
|
zsubcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ∈ ℤ ) |
171 |
108
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ℕ ) |
172 |
171
|
nnred |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ℝ ) |
173 |
172
|
ltm1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) < 𝑘 ) |
174 |
164 123
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝑘 − 1 ) ∈ ( 1 ... 𝐾 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ) |
175 |
55
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑑 ‘ 𝑥 ) < ( 𝑑 ‘ 𝑦 ) ) ) |
176 |
175
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑑 ‘ 𝑥 ) < ( 𝑑 ‘ 𝑦 ) ) ) |
177 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑘 − 1 ) → ( 𝑥 < 𝑦 ↔ ( 𝑘 − 1 ) < 𝑦 ) ) |
178 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑘 − 1 ) → ( 𝑑 ‘ 𝑥 ) = ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) |
179 |
178
|
breq1d |
⊢ ( 𝑥 = ( 𝑘 − 1 ) → ( ( 𝑑 ‘ 𝑥 ) < ( 𝑑 ‘ 𝑦 ) ↔ ( 𝑑 ‘ ( 𝑘 − 1 ) ) < ( 𝑑 ‘ 𝑦 ) ) ) |
180 |
177 179
|
imbi12d |
⊢ ( 𝑥 = ( 𝑘 − 1 ) → ( ( 𝑥 < 𝑦 → ( 𝑑 ‘ 𝑥 ) < ( 𝑑 ‘ 𝑦 ) ) ↔ ( ( 𝑘 − 1 ) < 𝑦 → ( 𝑑 ‘ ( 𝑘 − 1 ) ) < ( 𝑑 ‘ 𝑦 ) ) ) ) |
181 |
|
breq2 |
⊢ ( 𝑦 = 𝑘 → ( ( 𝑘 − 1 ) < 𝑦 ↔ ( 𝑘 − 1 ) < 𝑘 ) ) |
182 |
|
fveq2 |
⊢ ( 𝑦 = 𝑘 → ( 𝑑 ‘ 𝑦 ) = ( 𝑑 ‘ 𝑘 ) ) |
183 |
182
|
breq2d |
⊢ ( 𝑦 = 𝑘 → ( ( 𝑑 ‘ ( 𝑘 − 1 ) ) < ( 𝑑 ‘ 𝑦 ) ↔ ( 𝑑 ‘ ( 𝑘 − 1 ) ) < ( 𝑑 ‘ 𝑘 ) ) ) |
184 |
181 183
|
imbi12d |
⊢ ( 𝑦 = 𝑘 → ( ( ( 𝑘 − 1 ) < 𝑦 → ( 𝑑 ‘ ( 𝑘 − 1 ) ) < ( 𝑑 ‘ 𝑦 ) ) ↔ ( ( 𝑘 − 1 ) < 𝑘 → ( 𝑑 ‘ ( 𝑘 − 1 ) ) < ( 𝑑 ‘ 𝑘 ) ) ) ) |
185 |
180 184
|
rspc2va |
⊢ ( ( ( ( 𝑘 − 1 ) ∈ ( 1 ... 𝐾 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑑 ‘ 𝑥 ) < ( 𝑑 ‘ 𝑦 ) ) ) → ( ( 𝑘 − 1 ) < 𝑘 → ( 𝑑 ‘ ( 𝑘 − 1 ) ) < ( 𝑑 ‘ 𝑘 ) ) ) |
186 |
174 176 185
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝑘 − 1 ) < 𝑘 → ( 𝑑 ‘ ( 𝑘 − 1 ) ) < ( 𝑑 ‘ 𝑘 ) ) ) |
187 |
173 186
|
mpd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑑 ‘ ( 𝑘 − 1 ) ) < ( 𝑑 ‘ 𝑘 ) ) |
188 |
167
|
nnred |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑑 ‘ ( 𝑘 − 1 ) ) ∈ ℝ ) |
189 |
127
|
zred |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑑 ‘ 𝑘 ) ∈ ℝ ) |
190 |
188 189
|
posdifd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝑑 ‘ ( 𝑘 − 1 ) ) < ( 𝑑 ‘ 𝑘 ) ↔ 0 < ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) ) |
191 |
187 190
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 0 < ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) |
192 |
|
0zd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 0 ∈ ℤ ) |
193 |
192 169
|
zltlem1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 0 < ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ↔ 0 ≤ ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) |
194 |
191 193
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 0 ≤ ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) |
195 |
170 194
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ∈ ℤ ∧ 0 ≤ ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) |
196 |
|
elnn0z |
⊢ ( ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ∈ ℕ0 ↔ ( ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ∈ ℤ ∧ 0 ≤ ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) |
197 |
195 196
|
sylibr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ∈ ℕ0 ) |
198 |
84 85 96 197
|
ifbothda |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ∈ ℕ0 ) |
199 |
41 42 83 198
|
ifbothda |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ∈ ℕ0 ) |
200 |
|
eqid |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) |
201 |
199 200
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) |
202 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) |
203 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = 𝑖 ) → 𝑘 = 𝑖 ) |
204 |
203
|
eqeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = 𝑖 ) → ( 𝑘 = ( 𝐾 + 1 ) ↔ 𝑖 = ( 𝐾 + 1 ) ) ) |
205 |
203
|
eqeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = 𝑖 ) → ( 𝑘 = 1 ↔ 𝑖 = 1 ) ) |
206 |
203
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = 𝑖 ) → ( 𝑑 ‘ 𝑘 ) = ( 𝑑 ‘ 𝑖 ) ) |
207 |
203
|
fvoveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = 𝑖 ) → ( 𝑑 ‘ ( 𝑘 − 1 ) ) = ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) |
208 |
206 207
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = 𝑖 ) → ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) = ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) ) |
209 |
208
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = 𝑖 ) → ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) = ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) |
210 |
205 209
|
ifbieq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = 𝑖 ) → if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = if ( 𝑖 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) |
211 |
204 210
|
ifbieq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = 𝑖 ) → if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) ) |
212 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
213 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ∈ V ) |
214 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( ( 𝑑 ‘ 1 ) − 1 ) ∈ V ) |
215 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ∈ V ) |
216 |
214 215
|
ifcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → if ( 𝑖 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ∈ V ) |
217 |
213 216
|
ifcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) ∈ V ) |
218 |
202 211 212 217
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑖 ) = if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) ) |
219 |
218
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑖 ) = Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) ) |
220 |
|
eqeq1 |
⊢ ( 𝑖 = 𝑘 → ( 𝑖 = ( 𝐾 + 1 ) ↔ 𝑘 = ( 𝐾 + 1 ) ) ) |
221 |
|
eqeq1 |
⊢ ( 𝑖 = 𝑘 → ( 𝑖 = 1 ↔ 𝑘 = 1 ) ) |
222 |
|
fveq2 |
⊢ ( 𝑖 = 𝑘 → ( 𝑑 ‘ 𝑖 ) = ( 𝑑 ‘ 𝑘 ) ) |
223 |
|
fvoveq1 |
⊢ ( 𝑖 = 𝑘 → ( 𝑑 ‘ ( 𝑖 − 1 ) ) = ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) |
224 |
222 223
|
oveq12d |
⊢ ( 𝑖 = 𝑘 → ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) = ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) |
225 |
224
|
oveq1d |
⊢ ( 𝑖 = 𝑘 → ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) − 1 ) = ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) |
226 |
221 225
|
ifbieq2d |
⊢ ( 𝑖 = 𝑘 → if ( 𝑖 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) = if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) |
227 |
220 226
|
ifbieq2d |
⊢ ( 𝑖 = 𝑘 → if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) = if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) |
228 |
|
nfcv |
⊢ Ⅎ 𝑘 if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) |
229 |
|
nfcv |
⊢ Ⅎ 𝑖 if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) |
230 |
227 228 229
|
cbvsum |
⊢ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) = Σ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) |
231 |
230
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) = Σ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) |
232 |
|
eqid |
⊢ 1 = 1 |
233 |
|
1p0e1 |
⊢ ( 1 + 0 ) = 1 |
234 |
232 233
|
eqtr4i |
⊢ 1 = ( 1 + 0 ) |
235 |
234
|
a1i |
⊢ ( 𝜑 → 1 = ( 1 + 0 ) ) |
236 |
|
0le1 |
⊢ 0 ≤ 1 |
237 |
236
|
a1i |
⊢ ( 𝜑 → 0 ≤ 1 ) |
238 |
137 8 64 137 62 237
|
le2addd |
⊢ ( 𝜑 → ( 1 + 0 ) ≤ ( 𝐾 + 1 ) ) |
239 |
235 238
|
eqbrtrd |
⊢ ( 𝜑 → 1 ≤ ( 𝐾 + 1 ) ) |
240 |
60
|
peano2zd |
⊢ ( 𝜑 → ( 𝐾 + 1 ) ∈ ℤ ) |
241 |
|
eluz |
⊢ ( ( 1 ∈ ℤ ∧ ( 𝐾 + 1 ) ∈ ℤ ) → ( ( 𝐾 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ↔ 1 ≤ ( 𝐾 + 1 ) ) ) |
242 |
57 240 241
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐾 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ↔ 1 ≤ ( 𝐾 + 1 ) ) ) |
243 |
239 242
|
mpbird |
⊢ ( 𝜑 → ( 𝐾 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
244 |
243
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝐾 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
245 |
199
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ∈ ℂ ) |
246 |
|
eqeq1 |
⊢ ( 𝑘 = ( 𝐾 + 1 ) → ( 𝑘 = ( 𝐾 + 1 ) ↔ ( 𝐾 + 1 ) = ( 𝐾 + 1 ) ) ) |
247 |
|
eqeq1 |
⊢ ( 𝑘 = ( 𝐾 + 1 ) → ( 𝑘 = 1 ↔ ( 𝐾 + 1 ) = 1 ) ) |
248 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝐾 + 1 ) → ( 𝑑 ‘ 𝑘 ) = ( 𝑑 ‘ ( 𝐾 + 1 ) ) ) |
249 |
|
fvoveq1 |
⊢ ( 𝑘 = ( 𝐾 + 1 ) → ( 𝑑 ‘ ( 𝑘 − 1 ) ) = ( 𝑑 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) |
250 |
248 249
|
oveq12d |
⊢ ( 𝑘 = ( 𝐾 + 1 ) → ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) = ( ( 𝑑 ‘ ( 𝐾 + 1 ) ) − ( 𝑑 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) ) |
251 |
250
|
oveq1d |
⊢ ( 𝑘 = ( 𝐾 + 1 ) → ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) = ( ( ( 𝑑 ‘ ( 𝐾 + 1 ) ) − ( 𝑑 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) − 1 ) ) |
252 |
247 251
|
ifbieq2d |
⊢ ( 𝑘 = ( 𝐾 + 1 ) → if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = if ( ( 𝐾 + 1 ) = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ ( 𝐾 + 1 ) ) − ( 𝑑 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) − 1 ) ) ) |
253 |
246 252
|
ifbieq2d |
⊢ ( 𝑘 = ( 𝐾 + 1 ) → if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = if ( ( 𝐾 + 1 ) = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( ( 𝐾 + 1 ) = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ ( 𝐾 + 1 ) ) − ( 𝑑 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) − 1 ) ) ) ) |
254 |
244 245 253
|
fsumm1 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = ( Σ 𝑘 ∈ ( 1 ... ( ( 𝐾 + 1 ) − 1 ) ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) + if ( ( 𝐾 + 1 ) = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( ( 𝐾 + 1 ) = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ ( 𝐾 + 1 ) ) − ( 𝑑 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) − 1 ) ) ) ) ) |
255 |
156
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝐾 ∈ ℂ ) |
256 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 1 ∈ ℂ ) |
257 |
255 256
|
pncand |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( ( 𝐾 + 1 ) − 1 ) = 𝐾 ) |
258 |
257
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 1 ... ( ( 𝐾 + 1 ) − 1 ) ) = ( 1 ... 𝐾 ) ) |
259 |
258
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... ( ( 𝐾 + 1 ) − 1 ) ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) |
260 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝐾 + 1 ) = ( 𝐾 + 1 ) ) |
261 |
260
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → if ( ( 𝐾 + 1 ) = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( ( 𝐾 + 1 ) = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ ( 𝐾 + 1 ) ) − ( 𝑑 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) − 1 ) ) ) = ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ) |
262 |
259 261
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( Σ 𝑘 ∈ ( 1 ... ( ( 𝐾 + 1 ) − 1 ) ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) + if ( ( 𝐾 + 1 ) = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( ( 𝐾 + 1 ) = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ ( 𝐾 + 1 ) ) − ( 𝑑 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) − 1 ) ) ) ) = ( Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) + ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ) ) |
263 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 1 ... 𝐾 ) → 𝑘 ∈ ℤ ) |
264 |
263
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 𝑘 ∈ ℤ ) |
265 |
264
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 𝑘 ∈ ℝ ) |
266 |
64
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 𝐾 ∈ ℝ ) |
267 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 1 ∈ ℝ ) |
268 |
266 267
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → ( 𝐾 + 1 ) ∈ ℝ ) |
269 |
|
elfzle2 |
⊢ ( 𝑘 ∈ ( 1 ... 𝐾 ) → 𝑘 ≤ 𝐾 ) |
270 |
269
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 𝑘 ≤ 𝐾 ) |
271 |
266
|
ltp1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 𝐾 < ( 𝐾 + 1 ) ) |
272 |
265 266 268 270 271
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 𝑘 < ( 𝐾 + 1 ) ) |
273 |
265 272
|
ltned |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 𝑘 ≠ ( 𝐾 + 1 ) ) |
274 |
273
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → ¬ 𝑘 = ( 𝐾 + 1 ) ) |
275 |
274
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) |
276 |
275
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) |
277 |
|
eqeq1 |
⊢ ( ( ( 𝑑 ‘ 1 ) − 1 ) = if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) → ( ( ( 𝑑 ‘ 1 ) − 1 ) = ( if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) − 1 ) ↔ if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = ( if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) − 1 ) ) ) |
278 |
|
eqeq1 |
⊢ ( ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) = if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) → ( ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) = ( if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) − 1 ) ↔ if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = ( if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) − 1 ) ) ) |
279 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑘 = 1 ) → 𝑘 = 1 ) |
280 |
279
|
iftrued |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑘 = 1 ) → if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( 𝑑 ‘ 1 ) ) |
281 |
280
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑘 = 1 ) → ( 𝑑 ‘ 1 ) = if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) ) |
282 |
281
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑘 = 1 ) → ( ( 𝑑 ‘ 1 ) − 1 ) = ( if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) − 1 ) ) |
283 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ¬ 𝑘 = 1 ) |
284 |
283
|
iffalsed |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) |
285 |
284
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) = if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) ) |
286 |
285
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) = ( if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) − 1 ) ) |
287 |
277 278 282 286
|
ifbothda |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = ( if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) − 1 ) ) |
288 |
287
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = Σ 𝑘 ∈ ( 1 ... 𝐾 ) ( if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) − 1 ) ) |
289 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 1 ... 𝐾 ) ∈ Fin ) |
290 |
|
eleq1 |
⊢ ( ( 𝑑 ‘ 1 ) = if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( 𝑑 ‘ 1 ) ∈ ℤ ↔ if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) ∈ ℤ ) ) |
291 |
|
eleq1 |
⊢ ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) = if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ∈ ℤ ↔ if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) ∈ ℤ ) ) |
292 |
56
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
293 |
88
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 1 ∈ ( 1 ... 𝐾 ) ) |
294 |
292 293
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → ( 𝑑 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
295 |
90
|
nnzd |
⊢ ( ( 𝑑 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ 1 ) ∈ ℤ ) |
296 |
294 295
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → ( 𝑑 ‘ 1 ) ∈ ℤ ) |
297 |
296
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑘 = 1 ) → ( 𝑑 ‘ 1 ) ∈ ℤ ) |
298 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 𝑘 ∈ ( 1 ... 𝐾 ) ) |
299 |
292 298
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → ( 𝑑 ‘ 𝑘 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
300 |
299 126
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → ( 𝑑 ‘ 𝑘 ) ∈ ℤ ) |
301 |
300
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑑 ‘ 𝑘 ) ∈ ℤ ) |
302 |
292
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
303 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ∈ ℤ ) |
304 |
61
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 𝐾 ∈ ℤ ) |
305 |
304
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → 𝐾 ∈ ℤ ) |
306 |
264
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 𝑘 ∈ ℤ ) |
307 |
306
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ℤ ) |
308 |
307 303
|
zsubcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ∈ ℤ ) |
309 |
|
elfzle1 |
⊢ ( 𝑘 ∈ ( 1 ... 𝐾 ) → 1 ≤ 𝑘 ) |
310 |
298 309
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 1 ≤ 𝑘 ) |
311 |
310
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ≤ 𝑘 ) |
312 |
135
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ≠ 1 ) |
313 |
311 312
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ( 1 ≤ 𝑘 ∧ 𝑘 ≠ 1 ) ) |
314 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ∈ ℝ ) |
315 |
307
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ℝ ) |
316 |
314 315
|
ltlend |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ( 1 < 𝑘 ↔ ( 1 ≤ 𝑘 ∧ 𝑘 ≠ 1 ) ) ) |
317 |
313 316
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → 1 < 𝑘 ) |
318 |
303 307
|
zltlem1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ( 1 < 𝑘 ↔ 1 ≤ ( 𝑘 − 1 ) ) ) |
319 |
317 318
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ≤ ( 𝑘 − 1 ) ) |
320 |
308
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ∈ ℝ ) |
321 |
305
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → 𝐾 ∈ ℝ ) |
322 |
315
|
lem1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ≤ 𝑘 ) |
323 |
298 269
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 𝑘 ≤ 𝐾 ) |
324 |
323
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ≤ 𝐾 ) |
325 |
320 315 321 322 324
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ≤ 𝐾 ) |
326 |
303 305 308 319 325
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ∈ ( 1 ... 𝐾 ) ) |
327 |
302 326
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑑 ‘ ( 𝑘 − 1 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
328 |
327 166
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑑 ‘ ( 𝑘 − 1 ) ) ∈ ℕ ) |
329 |
328
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑑 ‘ ( 𝑘 − 1 ) ) ∈ ℤ ) |
330 |
301 329
|
zsubcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ∈ ℤ ) |
331 |
290 291 297 330
|
ifbothda |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) ∈ ℤ ) |
332 |
331
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) ∈ ℤ ) |
333 |
332
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) ∈ ℂ ) |
334 |
256
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 1 ∈ ℂ ) |
335 |
289 333 334
|
fsumsub |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) ( if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) − 1 ) = ( Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) − Σ 𝑘 ∈ ( 1 ... 𝐾 ) 1 ) ) |
336 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 1 = 𝐾 ) → 1 = 𝐾 ) |
337 |
336
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 1 = 𝐾 ) → ( 1 ... 1 ) = ( 1 ... 𝐾 ) ) |
338 |
337
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 1 = 𝐾 ) → ( 1 ... 𝐾 ) = ( 1 ... 1 ) ) |
339 |
338
|
sumeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 1 = 𝐾 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = Σ 𝑘 ∈ ( 1 ... 1 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) ) |
340 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 1 ∈ ℤ ) |
341 |
232
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 1 = 1 ) |
342 |
341
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → if ( 1 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 1 ) − ( 𝑑 ‘ ( 1 − 1 ) ) ) ) = ( 𝑑 ‘ 1 ) ) |
343 |
91
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑑 ‘ 1 ) ∈ ℂ ) |
344 |
342 343
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → if ( 1 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 1 ) − ( 𝑑 ‘ ( 1 − 1 ) ) ) ) ∈ ℂ ) |
345 |
|
eqeq1 |
⊢ ( 𝑘 = 1 → ( 𝑘 = 1 ↔ 1 = 1 ) ) |
346 |
|
fveq2 |
⊢ ( 𝑘 = 1 → ( 𝑑 ‘ 𝑘 ) = ( 𝑑 ‘ 1 ) ) |
347 |
|
fvoveq1 |
⊢ ( 𝑘 = 1 → ( 𝑑 ‘ ( 𝑘 − 1 ) ) = ( 𝑑 ‘ ( 1 − 1 ) ) ) |
348 |
346 347
|
oveq12d |
⊢ ( 𝑘 = 1 → ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) = ( ( 𝑑 ‘ 1 ) − ( 𝑑 ‘ ( 1 − 1 ) ) ) ) |
349 |
345 348
|
ifbieq2d |
⊢ ( 𝑘 = 1 → if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = if ( 1 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 1 ) − ( 𝑑 ‘ ( 1 − 1 ) ) ) ) ) |
350 |
349
|
fsum1 |
⊢ ( ( 1 ∈ ℤ ∧ if ( 1 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 1 ) − ( 𝑑 ‘ ( 1 − 1 ) ) ) ) ∈ ℂ ) → Σ 𝑘 ∈ ( 1 ... 1 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = if ( 1 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 1 ) − ( 𝑑 ‘ ( 1 − 1 ) ) ) ) ) |
351 |
340 344 350
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 1 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = if ( 1 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 1 ) − ( 𝑑 ‘ ( 1 − 1 ) ) ) ) ) |
352 |
351 342
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 1 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( 𝑑 ‘ 1 ) ) |
353 |
352
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 1 = 𝐾 ) → Σ 𝑘 ∈ ( 1 ... 1 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( 𝑑 ‘ 1 ) ) |
354 |
|
fveq2 |
⊢ ( 1 = 𝐾 → ( 𝑑 ‘ 1 ) = ( 𝑑 ‘ 𝐾 ) ) |
355 |
354
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 1 = 𝐾 ) → ( 𝑑 ‘ 1 ) = ( 𝑑 ‘ 𝐾 ) ) |
356 |
339 353 355
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 1 = 𝐾 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( 𝑑 ‘ 𝐾 ) ) |
357 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → 𝐾 ∈ ℕ ) |
358 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
359 |
358
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ℕ = ( ℤ≥ ‘ 1 ) ) |
360 |
357 359
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → 𝐾 ∈ ( ℤ≥ ‘ 1 ) ) |
361 |
333
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) ∈ ℂ ) |
362 |
|
iftrue |
⊢ ( 𝑘 = 1 → if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( 𝑑 ‘ 1 ) ) |
363 |
360 361 362
|
fsum1p |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( ( 𝑑 ‘ 1 ) + Σ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) ) ) |
364 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) ) → 1 ∈ ℝ ) |
365 |
|
elfzle1 |
⊢ ( 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) → ( 1 + 1 ) ≤ 𝑘 ) |
366 |
365
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) ) → ( 1 + 1 ) ≤ 𝑘 ) |
367 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) ) → 1 ∈ ℤ ) |
368 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) → 𝑘 ∈ ℤ ) |
369 |
368
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) ) → 𝑘 ∈ ℤ ) |
370 |
367 369
|
zltp1led |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) ) → ( 1 < 𝑘 ↔ ( 1 + 1 ) ≤ 𝑘 ) ) |
371 |
366 370
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) ) → 1 < 𝑘 ) |
372 |
364 371
|
ltned |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) ) → 1 ≠ 𝑘 ) |
373 |
372
|
necomd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) ) → 𝑘 ≠ 1 ) |
374 |
373
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) ) → ¬ 𝑘 = 1 ) |
375 |
374
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) ) → if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) |
376 |
375
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → Σ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = Σ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) |
377 |
376
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝑑 ‘ 1 ) + Σ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) ) = ( ( 𝑑 ‘ 1 ) + Σ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) ) |
378 |
255
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → 𝐾 ∈ ℂ ) |
379 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → 1 ∈ ℂ ) |
380 |
378 379
|
npcand |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝐾 − 1 ) + 1 ) = 𝐾 ) |
381 |
380
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → 𝐾 = ( ( 𝐾 − 1 ) + 1 ) ) |
382 |
381
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 1 + 1 ) ... 𝐾 ) = ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ) |
383 |
382
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → Σ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) = Σ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) |
384 |
383
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝑑 ‘ 1 ) + Σ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( ( 𝑑 ‘ 1 ) + Σ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) ) |
385 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) → 𝑘 ∈ ℤ ) |
386 |
385
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ) → 𝑘 ∈ ℤ ) |
387 |
386
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ) → 𝑘 ∈ ℂ ) |
388 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ) → 1 ∈ ℂ ) |
389 |
387 388
|
npcand |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ) → ( ( 𝑘 − 1 ) + 1 ) = 𝑘 ) |
390 |
389
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ) → 𝑘 = ( ( 𝑘 − 1 ) + 1 ) ) |
391 |
390
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ) → ( 𝑑 ‘ 𝑘 ) = ( 𝑑 ‘ ( ( 𝑘 − 1 ) + 1 ) ) ) |
392 |
391
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ) → ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) = ( ( 𝑑 ‘ ( ( 𝑘 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) |
393 |
392
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → Σ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) = Σ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ( ( 𝑑 ‘ ( ( 𝑘 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) |
394 |
393
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝑑 ‘ 1 ) + Σ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( ( 𝑑 ‘ 1 ) + Σ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ( ( 𝑑 ‘ ( ( 𝑘 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) ) |
395 |
58
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → 1 ∈ ℤ ) |
396 |
61
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → 𝐾 ∈ ℤ ) |
397 |
396 395
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( 𝐾 − 1 ) ∈ ℤ ) |
398 |
56
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
399 |
398
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
400 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 1 ∈ ℤ ) |
401 |
396
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 𝐾 ∈ ℤ ) |
402 |
|
elfznn |
⊢ ( 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) → 𝑠 ∈ ℕ ) |
403 |
402
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 𝑠 ∈ ℕ ) |
404 |
403
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 𝑠 ∈ ℤ ) |
405 |
404
|
peano2zd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝑠 + 1 ) ∈ ℤ ) |
406 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 1 ∈ ℝ ) |
407 |
403
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 𝑠 ∈ ℝ ) |
408 |
405
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝑠 + 1 ) ∈ ℝ ) |
409 |
403
|
nnge1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 1 ≤ 𝑠 ) |
410 |
407
|
lep1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 𝑠 ≤ ( 𝑠 + 1 ) ) |
411 |
406 407 408 409 410
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 1 ≤ ( 𝑠 + 1 ) ) |
412 |
|
elfzle2 |
⊢ ( 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) → 𝑠 ≤ ( 𝐾 − 1 ) ) |
413 |
412
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 𝑠 ≤ ( 𝐾 − 1 ) ) |
414 |
401
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 𝐾 ∈ ℝ ) |
415 |
|
leaddsub |
⊢ ( ( 𝑠 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐾 ∈ ℝ ) → ( ( 𝑠 + 1 ) ≤ 𝐾 ↔ 𝑠 ≤ ( 𝐾 − 1 ) ) ) |
416 |
407 406 414 415
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( ( 𝑠 + 1 ) ≤ 𝐾 ↔ 𝑠 ≤ ( 𝐾 − 1 ) ) ) |
417 |
413 416
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝑠 + 1 ) ≤ 𝐾 ) |
418 |
400 401 405 411 417
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝑠 + 1 ) ∈ ( 1 ... 𝐾 ) ) |
419 |
399 418
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝑑 ‘ ( 𝑠 + 1 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
420 |
|
elfznn |
⊢ ( ( 𝑑 ‘ ( 𝑠 + 1 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ ( 𝑠 + 1 ) ) ∈ ℕ ) |
421 |
419 420
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝑑 ‘ ( 𝑠 + 1 ) ) ∈ ℕ ) |
422 |
421
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝑑 ‘ ( 𝑠 + 1 ) ) ∈ ℤ ) |
423 |
414 406
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝐾 − 1 ) ∈ ℝ ) |
424 |
414
|
lem1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝐾 − 1 ) ≤ 𝐾 ) |
425 |
407 423 414 413 424
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 𝑠 ≤ 𝐾 ) |
426 |
400 401 404 409 425
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 𝑠 ∈ ( 1 ... 𝐾 ) ) |
427 |
399
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) ∧ 𝑠 ∈ ( 1 ... 𝐾 ) ) → ( 𝑑 ‘ 𝑠 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
428 |
426 427
|
mpdan |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝑑 ‘ 𝑠 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
429 |
|
elfznn |
⊢ ( ( 𝑑 ‘ 𝑠 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ 𝑠 ) ∈ ℕ ) |
430 |
428 429
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝑑 ‘ 𝑠 ) ∈ ℕ ) |
431 |
430
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝑑 ‘ 𝑠 ) ∈ ℤ ) |
432 |
422 431
|
zsubcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( ( 𝑑 ‘ ( 𝑠 + 1 ) ) − ( 𝑑 ‘ 𝑠 ) ) ∈ ℤ ) |
433 |
432
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( ( 𝑑 ‘ ( 𝑠 + 1 ) ) − ( 𝑑 ‘ 𝑠 ) ) ∈ ℂ ) |
434 |
|
fvoveq1 |
⊢ ( 𝑠 = ( 𝑘 − 1 ) → ( 𝑑 ‘ ( 𝑠 + 1 ) ) = ( 𝑑 ‘ ( ( 𝑘 − 1 ) + 1 ) ) ) |
435 |
|
fveq2 |
⊢ ( 𝑠 = ( 𝑘 − 1 ) → ( 𝑑 ‘ 𝑠 ) = ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) |
436 |
434 435
|
oveq12d |
⊢ ( 𝑠 = ( 𝑘 − 1 ) → ( ( 𝑑 ‘ ( 𝑠 + 1 ) ) − ( 𝑑 ‘ 𝑠 ) ) = ( ( 𝑑 ‘ ( ( 𝑘 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) |
437 |
395 395 397 433 436
|
fsumshft |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → Σ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ( ( 𝑑 ‘ ( 𝑠 + 1 ) ) − ( 𝑑 ‘ 𝑠 ) ) = Σ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ( ( 𝑑 ‘ ( ( 𝑘 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) |
438 |
437
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → Σ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ( ( 𝑑 ‘ ( ( 𝑘 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) = Σ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ( ( 𝑑 ‘ ( 𝑠 + 1 ) ) − ( 𝑑 ‘ 𝑠 ) ) ) |
439 |
438
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝑑 ‘ 1 ) + Σ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ( ( 𝑑 ‘ ( ( 𝑘 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( ( 𝑑 ‘ 1 ) + Σ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ( ( 𝑑 ‘ ( 𝑠 + 1 ) ) − ( 𝑑 ‘ 𝑠 ) ) ) ) |
440 |
|
fveq2 |
⊢ ( 𝑜 = 𝑠 → ( 𝑑 ‘ 𝑜 ) = ( 𝑑 ‘ 𝑠 ) ) |
441 |
|
fveq2 |
⊢ ( 𝑜 = ( 𝑠 + 1 ) → ( 𝑑 ‘ 𝑜 ) = ( 𝑑 ‘ ( 𝑠 + 1 ) ) ) |
442 |
|
fveq2 |
⊢ ( 𝑜 = 1 → ( 𝑑 ‘ 𝑜 ) = ( 𝑑 ‘ 1 ) ) |
443 |
|
fveq2 |
⊢ ( 𝑜 = ( ( 𝐾 − 1 ) + 1 ) → ( 𝑑 ‘ 𝑜 ) = ( 𝑑 ‘ ( ( 𝐾 − 1 ) + 1 ) ) ) |
444 |
380 360
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝐾 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
445 |
56
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 1 < 𝐾 ) → 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
446 |
445
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
447 |
446
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑜 ∈ ( 1 ... 𝐾 ) ) → ( 𝑑 ‘ 𝑜 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
448 |
447
|
ex |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( 𝑜 ∈ ( 1 ... 𝐾 ) → ( 𝑑 ‘ 𝑜 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) ) |
449 |
380
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) = ( 1 ... 𝐾 ) ) |
450 |
449
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( 𝑜 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ↔ 𝑜 ∈ ( 1 ... 𝐾 ) ) ) |
451 |
450
|
imbi1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝑜 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) → ( 𝑑 ‘ 𝑜 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) ↔ ( 𝑜 ∈ ( 1 ... 𝐾 ) → ( 𝑑 ‘ 𝑜 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) ) ) |
452 |
448 451
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( 𝑜 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) → ( 𝑑 ‘ 𝑜 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) ) |
453 |
452
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑜 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ) → ( 𝑑 ‘ 𝑜 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
454 |
|
elfznn |
⊢ ( ( 𝑑 ‘ 𝑜 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ 𝑜 ) ∈ ℕ ) |
455 |
453 454
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑜 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ) → ( 𝑑 ‘ 𝑜 ) ∈ ℕ ) |
456 |
455
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑜 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ) → ( 𝑑 ‘ 𝑜 ) ∈ ℂ ) |
457 |
440 441 442 443 397 444 456
|
telfsum2 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → Σ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ( ( 𝑑 ‘ ( 𝑠 + 1 ) ) − ( 𝑑 ‘ 𝑠 ) ) = ( ( 𝑑 ‘ ( ( 𝐾 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) |
458 |
457
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝑑 ‘ 1 ) + Σ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ( ( 𝑑 ‘ ( 𝑠 + 1 ) ) − ( 𝑑 ‘ 𝑠 ) ) ) = ( ( 𝑑 ‘ 1 ) + ( ( 𝑑 ‘ ( ( 𝐾 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) ) |
459 |
380
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( 𝑑 ‘ ( ( 𝐾 − 1 ) + 1 ) ) = ( 𝑑 ‘ 𝐾 ) ) |
460 |
459
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝑑 ‘ ( ( 𝐾 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) = ( ( 𝑑 ‘ 𝐾 ) − ( 𝑑 ‘ 1 ) ) ) |
461 |
460
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝑑 ‘ 1 ) + ( ( 𝑑 ‘ ( ( 𝐾 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) = ( ( 𝑑 ‘ 1 ) + ( ( 𝑑 ‘ 𝐾 ) − ( 𝑑 ‘ 1 ) ) ) ) |
462 |
343
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( 𝑑 ‘ 1 ) ∈ ℂ ) |
463 |
68 73
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑑 ‘ 𝐾 ) ∈ ℕ ) |
464 |
463
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑑 ‘ 𝐾 ) ∈ ℂ ) |
465 |
464
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( 𝑑 ‘ 𝐾 ) ∈ ℂ ) |
466 |
462 465
|
pncan3d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝑑 ‘ 1 ) + ( ( 𝑑 ‘ 𝐾 ) − ( 𝑑 ‘ 1 ) ) ) = ( 𝑑 ‘ 𝐾 ) ) |
467 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( 𝑑 ‘ 𝐾 ) = ( 𝑑 ‘ 𝐾 ) ) |
468 |
466 467
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝑑 ‘ 1 ) + ( ( 𝑑 ‘ 𝐾 ) − ( 𝑑 ‘ 1 ) ) ) = ( 𝑑 ‘ 𝐾 ) ) |
469 |
461 468
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝑑 ‘ 1 ) + ( ( 𝑑 ‘ ( ( 𝐾 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) = ( 𝑑 ‘ 𝐾 ) ) |
470 |
458 469
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝑑 ‘ 1 ) + Σ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ( ( 𝑑 ‘ ( 𝑠 + 1 ) ) − ( 𝑑 ‘ 𝑠 ) ) ) = ( 𝑑 ‘ 𝐾 ) ) |
471 |
439 470
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝑑 ‘ 1 ) + Σ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ( ( 𝑑 ‘ ( ( 𝑘 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( 𝑑 ‘ 𝐾 ) ) |
472 |
394 471
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝑑 ‘ 1 ) + Σ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( 𝑑 ‘ 𝐾 ) ) |
473 |
384 472
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝑑 ‘ 1 ) + Σ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( 𝑑 ‘ 𝐾 ) ) |
474 |
377 473
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝑑 ‘ 1 ) + Σ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) ) = ( 𝑑 ‘ 𝐾 ) ) |
475 |
363 474
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( 𝑑 ‘ 𝐾 ) ) |
476 |
475
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 1 < 𝐾 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( 𝑑 ‘ 𝐾 ) ) |
477 |
137
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 1 ∈ ℝ ) |
478 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝐾 ∈ ℝ ) |
479 |
477 478
|
leloed |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 1 ≤ 𝐾 ↔ ( 1 < 𝐾 ∨ 1 = 𝐾 ) ) ) |
480 |
63 479
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 1 < 𝐾 ∨ 1 = 𝐾 ) ) |
481 |
480
|
orcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 1 = 𝐾 ∨ 1 < 𝐾 ) ) |
482 |
356 476 481
|
mpjaodan |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( 𝑑 ‘ 𝐾 ) ) |
483 |
|
fsumconst |
⊢ ( ( ( 1 ... 𝐾 ) ∈ Fin ∧ 1 ∈ ℂ ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) 1 = ( ( ♯ ‘ ( 1 ... 𝐾 ) ) · 1 ) ) |
484 |
289 256 483
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) 1 = ( ( ♯ ‘ ( 1 ... 𝐾 ) ) · 1 ) ) |
485 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝐾 ∈ ℕ0 ) |
486 |
|
hashfz1 |
⊢ ( 𝐾 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝐾 ) ) = 𝐾 ) |
487 |
485 486
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( ♯ ‘ ( 1 ... 𝐾 ) ) = 𝐾 ) |
488 |
487
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( ( ♯ ‘ ( 1 ... 𝐾 ) ) · 1 ) = ( 𝐾 · 1 ) ) |
489 |
255
|
mulridd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝐾 · 1 ) = 𝐾 ) |
490 |
488 489
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( ( ♯ ‘ ( 1 ... 𝐾 ) ) · 1 ) = 𝐾 ) |
491 |
484 490
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) 1 = 𝐾 ) |
492 |
482 491
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) − Σ 𝑘 ∈ ( 1 ... 𝐾 ) 1 ) = ( ( 𝑑 ‘ 𝐾 ) − 𝐾 ) ) |
493 |
335 492
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) ( if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) − 1 ) = ( ( 𝑑 ‘ 𝐾 ) − 𝐾 ) ) |
494 |
288 493
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = ( ( 𝑑 ‘ 𝐾 ) − 𝐾 ) ) |
495 |
464 255
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( ( 𝑑 ‘ 𝐾 ) − 𝐾 ) ∈ ℂ ) |
496 |
495
|
addridd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( ( ( 𝑑 ‘ 𝐾 ) − 𝐾 ) + 0 ) = ( ( 𝑑 ‘ 𝐾 ) − 𝐾 ) ) |
497 |
496
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( ( 𝑑 ‘ 𝐾 ) − 𝐾 ) = ( ( ( 𝑑 ‘ 𝐾 ) − 𝐾 ) + 0 ) ) |
498 |
|
0cnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 0 ∈ ℂ ) |
499 |
495 498
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( ( ( 𝑑 ‘ 𝐾 ) − 𝐾 ) + 0 ) = ( 0 + ( ( 𝑑 ‘ 𝐾 ) − 𝐾 ) ) ) |
500 |
497 499
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( ( 𝑑 ‘ 𝐾 ) − 𝐾 ) = ( 0 + ( ( 𝑑 ‘ 𝐾 ) − 𝐾 ) ) ) |
501 |
494 500
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = ( 0 + ( ( 𝑑 ‘ 𝐾 ) − 𝐾 ) ) ) |
502 |
498 255 464
|
subsub2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 0 − ( 𝐾 − ( 𝑑 ‘ 𝐾 ) ) ) = ( 0 + ( ( 𝑑 ‘ 𝐾 ) − 𝐾 ) ) ) |
503 |
502
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 0 + ( ( 𝑑 ‘ 𝐾 ) − 𝐾 ) ) = ( 0 − ( 𝐾 − ( 𝑑 ‘ 𝐾 ) ) ) ) |
504 |
501 503
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = ( 0 − ( 𝐾 − ( 𝑑 ‘ 𝐾 ) ) ) ) |
505 |
1
|
nn0cnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
506 |
505
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝑁 ∈ ℂ ) |
507 |
506
|
subidd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑁 − 𝑁 ) = 0 ) |
508 |
507
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 0 = ( 𝑁 − 𝑁 ) ) |
509 |
508
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 0 − ( 𝐾 − ( 𝑑 ‘ 𝐾 ) ) ) = ( ( 𝑁 − 𝑁 ) − ( 𝐾 − ( 𝑑 ‘ 𝐾 ) ) ) ) |
510 |
504 509
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = ( ( 𝑁 − 𝑁 ) − ( 𝐾 − ( 𝑑 ‘ 𝐾 ) ) ) ) |
511 |
255 464
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝐾 − ( 𝑑 ‘ 𝐾 ) ) ∈ ℂ ) |
512 |
506 506 511
|
subsub4d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( ( 𝑁 − 𝑁 ) − ( 𝐾 − ( 𝑑 ‘ 𝐾 ) ) ) = ( 𝑁 − ( 𝑁 + ( 𝐾 − ( 𝑑 ‘ 𝐾 ) ) ) ) ) |
513 |
510 512
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = ( 𝑁 − ( 𝑁 + ( 𝐾 − ( 𝑑 ‘ 𝐾 ) ) ) ) ) |
514 |
506 255 464
|
addsubassd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) = ( 𝑁 + ( 𝐾 − ( 𝑑 ‘ 𝐾 ) ) ) ) |
515 |
514
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑁 + ( 𝐾 − ( 𝑑 ‘ 𝐾 ) ) ) = ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ) |
516 |
515
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑁 − ( 𝑁 + ( 𝐾 − ( 𝑑 ‘ 𝐾 ) ) ) ) = ( 𝑁 − ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ) ) |
517 |
513 516
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = ( 𝑁 − ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ) ) |
518 |
276 517
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = ( 𝑁 − ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ) ) |
519 |
|
eleq1 |
⊢ ( ( ( 𝑑 ‘ 1 ) − 1 ) = if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) → ( ( ( 𝑑 ‘ 1 ) − 1 ) ∈ ℤ ↔ if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ∈ ℤ ) ) |
520 |
|
eleq1 |
⊢ ( ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) = if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) → ( ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ∈ ℤ ↔ if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ∈ ℤ ) ) |
521 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 1 ∈ ℤ ) |
522 |
296 521
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑑 ‘ 1 ) − 1 ) ∈ ℤ ) |
523 |
522
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑘 = 1 ) → ( ( 𝑑 ‘ 1 ) − 1 ) ∈ ℤ ) |
524 |
521
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ∈ ℤ ) |
525 |
330 524
|
zsubcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ∈ ℤ ) |
526 |
519 520 523 525
|
ifbothda |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ∈ ℤ ) |
527 |
526
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ∈ ℤ ) |
528 |
275
|
eleq1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → ( if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ∈ ℤ ↔ if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ∈ ℤ ) ) |
529 |
527 528
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ∈ ℤ ) |
530 |
289 529
|
fsumzcl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ∈ ℤ ) |
531 |
530
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ∈ ℂ ) |
532 |
506 255
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑁 + 𝐾 ) ∈ ℂ ) |
533 |
532 464
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ∈ ℂ ) |
534 |
531 533 506
|
addlsub |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( ( Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) + ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ) = 𝑁 ↔ Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = ( 𝑁 − ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ) ) ) |
535 |
518 534
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) + ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ) = 𝑁 ) |
536 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝑁 = 𝑁 ) |
537 |
535 536
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) + ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ) = 𝑁 ) |
538 |
262 537
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( Σ 𝑘 ∈ ( 1 ... ( ( 𝐾 + 1 ) − 1 ) ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) + if ( ( 𝐾 + 1 ) = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( ( 𝐾 + 1 ) = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ ( 𝐾 + 1 ) ) − ( 𝑑 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) − 1 ) ) ) ) = 𝑁 ) |
539 |
254 538
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = 𝑁 ) |
540 |
231 539
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) = 𝑁 ) |
541 |
219 540
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑖 ) = 𝑁 ) |
542 |
201 541
|
jca |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑖 ) = 𝑁 ) ) |
543 |
|
ovex |
⊢ ( 1 ... ( 𝐾 + 1 ) ) ∈ V |
544 |
543
|
mptex |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ∈ V |
545 |
|
feq1 |
⊢ ( 𝑔 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) → ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ↔ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) ) |
546 |
|
simpl |
⊢ ( ( 𝑔 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑔 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) |
547 |
546
|
fveq1d |
⊢ ( ( 𝑔 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑔 ‘ 𝑖 ) = ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑖 ) ) |
548 |
547
|
sumeq2dv |
⊢ ( 𝑔 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑖 ) ) |
549 |
548
|
eqeq1d |
⊢ ( 𝑔 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) → ( Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ↔ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑖 ) = 𝑁 ) ) |
550 |
545 549
|
anbi12d |
⊢ ( 𝑔 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) → ( ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) ↔ ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑖 ) = 𝑁 ) ) ) |
551 |
544 550
|
elab |
⊢ ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ↔ ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑖 ) = 𝑁 ) ) |
552 |
551
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ↔ ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑖 ) = 𝑁 ) ) ) |
553 |
542 552
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ) |
554 |
5
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝐴 = { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ) |
555 |
554
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } = 𝐴 ) |
556 |
553 555
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ∈ 𝐴 ) |
557 |
289
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑙 ) ) ) ∈ V ) |
558 |
34 40 556 557
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑙 ) ) ) ) |
559 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) |
560 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ 𝑘 = 𝑙 ) → 𝑘 = 𝑙 ) |
561 |
560
|
eqeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ 𝑘 = 𝑙 ) → ( 𝑘 = ( 𝐾 + 1 ) ↔ 𝑙 = ( 𝐾 + 1 ) ) ) |
562 |
560
|
eqeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ 𝑘 = 𝑙 ) → ( 𝑘 = 1 ↔ 𝑙 = 1 ) ) |
563 |
560
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ 𝑘 = 𝑙 ) → ( 𝑑 ‘ 𝑘 ) = ( 𝑑 ‘ 𝑙 ) ) |
564 |
560
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ 𝑘 = 𝑙 ) → ( 𝑘 − 1 ) = ( 𝑙 − 1 ) ) |
565 |
564
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ 𝑘 = 𝑙 ) → ( 𝑑 ‘ ( 𝑘 − 1 ) ) = ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) |
566 |
563 565
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ 𝑘 = 𝑙 ) → ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) = ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) |
567 |
566
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ 𝑘 = 𝑙 ) → ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) = ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) |
568 |
562 567
|
ifbieq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ 𝑘 = 𝑙 ) → if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) |
569 |
561 568
|
ifbieq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ 𝑘 = 𝑙 ) → if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = if ( 𝑙 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) ) |
570 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 1 ∈ ℤ ) |
571 |
60
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝐾 ∈ ℤ ) |
572 |
571
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝐾 ∈ ℤ ) |
573 |
572
|
peano2zd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → ( 𝐾 + 1 ) ∈ ℤ ) |
574 |
|
elfzelz |
⊢ ( 𝑙 ∈ ( 1 ... 𝑗 ) → 𝑙 ∈ ℤ ) |
575 |
574
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑙 ∈ ℤ ) |
576 |
|
elfzle1 |
⊢ ( 𝑙 ∈ ( 1 ... 𝑗 ) → 1 ≤ 𝑙 ) |
577 |
576
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 1 ≤ 𝑙 ) |
578 |
575
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑙 ∈ ℝ ) |
579 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝑗 ∈ ( 1 ... 𝐾 ) ) |
580 |
|
elfznn |
⊢ ( 𝑗 ∈ ( 1 ... 𝐾 ) → 𝑗 ∈ ℕ ) |
581 |
579 580
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝑗 ∈ ℕ ) |
582 |
581
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝑗 ∈ ℝ ) |
583 |
582
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑗 ∈ ℝ ) |
584 |
573
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → ( 𝐾 + 1 ) ∈ ℝ ) |
585 |
|
elfzle2 |
⊢ ( 𝑙 ∈ ( 1 ... 𝑗 ) → 𝑙 ≤ 𝑗 ) |
586 |
585
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑙 ≤ 𝑗 ) |
587 |
64
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝐾 ∈ ℝ ) |
588 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 1 ∈ ℝ ) |
589 |
587 588
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝐾 + 1 ) ∈ ℝ ) |
590 |
|
elfzle2 |
⊢ ( 𝑗 ∈ ( 1 ... 𝐾 ) → 𝑗 ≤ 𝐾 ) |
591 |
579 590
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝑗 ≤ 𝐾 ) |
592 |
587
|
lep1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝐾 ≤ ( 𝐾 + 1 ) ) |
593 |
582 587 589 591 592
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝑗 ≤ ( 𝐾 + 1 ) ) |
594 |
593
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑗 ≤ ( 𝐾 + 1 ) ) |
595 |
578 583 584 586 594
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑙 ≤ ( 𝐾 + 1 ) ) |
596 |
570 573 575 577 595
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
597 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ∈ V ) |
598 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → ( ( 𝑑 ‘ 1 ) − 1 ) ∈ V ) |
599 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ∈ V ) |
600 |
598 599
|
ifcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ∈ V ) |
601 |
597 600
|
ifcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → if ( 𝑙 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) ∈ V ) |
602 |
559 569 596 601
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑙 ) = if ( 𝑙 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) ) |
603 |
602
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑙 ) = Σ 𝑙 ∈ ( 1 ... 𝑗 ) if ( 𝑙 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) ) |
604 |
603
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑙 ) ) = ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) if ( 𝑙 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) ) ) |
605 |
|
elfznn |
⊢ ( 𝑙 ∈ ( 1 ... 𝑗 ) → 𝑙 ∈ ℕ ) |
606 |
605
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑙 ∈ ℕ ) |
607 |
606
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑙 ∈ ℝ ) |
608 |
587
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝐾 ∈ ℝ ) |
609 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 1 ∈ ℝ ) |
610 |
608 609
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → ( 𝐾 + 1 ) ∈ ℝ ) |
611 |
581
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑗 ∈ ℕ ) |
612 |
611
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑗 ∈ ℝ ) |
613 |
591
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑗 ≤ 𝐾 ) |
614 |
607 612 608 586 613
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑙 ≤ 𝐾 ) |
615 |
608
|
ltp1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝐾 < ( 𝐾 + 1 ) ) |
616 |
607 608 610 614 615
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑙 < ( 𝐾 + 1 ) ) |
617 |
607 616
|
ltned |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑙 ≠ ( 𝐾 + 1 ) ) |
618 |
617
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → ¬ 𝑙 = ( 𝐾 + 1 ) ) |
619 |
618
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → if ( 𝑙 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) = if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) |
620 |
619
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( 1 ... 𝑗 ) if ( 𝑙 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) = Σ 𝑙 ∈ ( 1 ... 𝑗 ) if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) |
621 |
620
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) if ( 𝑙 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) ) = ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) ) |
622 |
581
|
nnge1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 1 ≤ 𝑗 ) |
623 |
57
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 1 ∈ ℤ ) |
624 |
581
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝑗 ∈ ℤ ) |
625 |
|
eluz |
⊢ ( ( 1 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 𝑗 ∈ ( ℤ≥ ‘ 1 ) ↔ 1 ≤ 𝑗 ) ) |
626 |
623 624 625
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 ∈ ( ℤ≥ ‘ 1 ) ↔ 1 ≤ 𝑗 ) ) |
627 |
622 626
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) |
628 |
|
eleq1 |
⊢ ( ( ( 𝑑 ‘ 1 ) − 1 ) = if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) → ( ( ( 𝑑 ‘ 1 ) − 1 ) ∈ ℂ ↔ if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ∈ ℂ ) ) |
629 |
|
eleq1 |
⊢ ( ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) = if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) → ( ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ∈ ℂ ↔ if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ∈ ℂ ) ) |
630 |
56
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
631 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝜑 ) |
632 |
631 62
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 1 ≤ 𝐾 ) |
633 |
631 60
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝐾 ∈ ℤ ) |
634 |
|
eluz |
⊢ ( ( 1 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 𝐾 ∈ ( ℤ≥ ‘ 1 ) ↔ 1 ≤ 𝐾 ) ) |
635 |
623 633 634
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝐾 ∈ ( ℤ≥ ‘ 1 ) ↔ 1 ≤ 𝐾 ) ) |
636 |
632 635
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝐾 ∈ ( ℤ≥ ‘ 1 ) ) |
637 |
|
eluzfz1 |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... 𝐾 ) ) |
638 |
636 637
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 1 ∈ ( 1 ... 𝐾 ) ) |
639 |
630 638
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑑 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
640 |
639 90
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑑 ‘ 1 ) ∈ ℕ ) |
641 |
640
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑑 ‘ 1 ) ∈ ℤ ) |
642 |
641 623
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑑 ‘ 1 ) − 1 ) ∈ ℤ ) |
643 |
642
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑑 ‘ 1 ) − 1 ) ∈ ℂ ) |
644 |
643
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → ( ( 𝑑 ‘ 1 ) − 1 ) ∈ ℂ ) |
645 |
644
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ 𝑙 = 1 ) → ( ( 𝑑 ‘ 1 ) − 1 ) ∈ ℂ ) |
646 |
630
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
647 |
633
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝐾 ∈ ℤ ) |
648 |
606
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑙 ∈ ℤ ) |
649 |
606
|
nnge1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 1 ≤ 𝑙 ) |
650 |
570 647 648 649 614
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑙 ∈ ( 1 ... 𝐾 ) ) |
651 |
646 650
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → ( 𝑑 ‘ 𝑙 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
652 |
|
elfzelz |
⊢ ( ( 𝑑 ‘ 𝑙 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ 𝑙 ) ∈ ℤ ) |
653 |
651 652
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → ( 𝑑 ‘ 𝑙 ) ∈ ℤ ) |
654 |
653
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → ( 𝑑 ‘ 𝑙 ) ∈ ℤ ) |
655 |
646
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
656 |
|
1zzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → 1 ∈ ℤ ) |
657 |
647
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → 𝐾 ∈ ℤ ) |
658 |
648
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → 𝑙 ∈ ℤ ) |
659 |
658 656
|
zsubcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → ( 𝑙 − 1 ) ∈ ℤ ) |
660 |
|
neqne |
⊢ ( ¬ 𝑙 = 1 → 𝑙 ≠ 1 ) |
661 |
660
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → 𝑙 ≠ 1 ) |
662 |
609
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → 1 ∈ ℝ ) |
663 |
607
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → 𝑙 ∈ ℝ ) |
664 |
649
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → 1 ≤ 𝑙 ) |
665 |
662 663 664
|
leltned |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → ( 1 < 𝑙 ↔ 𝑙 ≠ 1 ) ) |
666 |
661 665
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → 1 < 𝑙 ) |
667 |
656 658
|
zltlem1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → ( 1 < 𝑙 ↔ 1 ≤ ( 𝑙 − 1 ) ) ) |
668 |
666 667
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → 1 ≤ ( 𝑙 − 1 ) ) |
669 |
659
|
zred |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → ( 𝑙 − 1 ) ∈ ℝ ) |
670 |
608
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → 𝐾 ∈ ℝ ) |
671 |
663
|
lem1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → ( 𝑙 − 1 ) ≤ 𝑙 ) |
672 |
614
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → 𝑙 ≤ 𝐾 ) |
673 |
669 663 670 671 672
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → ( 𝑙 − 1 ) ≤ 𝐾 ) |
674 |
656 657 659 668 673
|
elfzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → ( 𝑙 − 1 ) ∈ ( 1 ... 𝐾 ) ) |
675 |
655 674
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → ( 𝑑 ‘ ( 𝑙 − 1 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
676 |
|
elfzelz |
⊢ ( ( 𝑑 ‘ ( 𝑙 − 1 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ ( 𝑙 − 1 ) ) ∈ ℤ ) |
677 |
675 676
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → ( 𝑑 ‘ ( 𝑙 − 1 ) ) ∈ ℤ ) |
678 |
654 677
|
zsubcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ∈ ℤ ) |
679 |
678 656
|
zsubcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ∈ ℤ ) |
680 |
679
|
zcnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ∈ ℂ ) |
681 |
628 629 645 680
|
ifbothda |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ∈ ℂ ) |
682 |
|
iftrue |
⊢ ( 𝑙 = 1 → if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) = ( ( 𝑑 ‘ 1 ) − 1 ) ) |
683 |
627 681 682
|
fsum1p |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( 1 ... 𝑗 ) if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) = ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) ) |
684 |
683
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) = ( 𝑗 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) ) ) |
685 |
631 137
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 1 ∈ ℝ ) |
686 |
685
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 1 ∈ ℝ ) |
687 |
686 686
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( 1 + 1 ) ∈ ℝ ) |
688 |
|
elfzelz |
⊢ ( 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) → 𝑙 ∈ ℤ ) |
689 |
688
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 𝑙 ∈ ℤ ) |
690 |
689
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 𝑙 ∈ ℝ ) |
691 |
686
|
ltp1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 1 < ( 1 + 1 ) ) |
692 |
|
elfzle1 |
⊢ ( 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) → ( 1 + 1 ) ≤ 𝑙 ) |
693 |
692
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( 1 + 1 ) ≤ 𝑙 ) |
694 |
686 687 690 691 693
|
ltletrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 1 < 𝑙 ) |
695 |
686 694
|
ltned |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 1 ≠ 𝑙 ) |
696 |
695
|
necomd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 𝑙 ≠ 1 ) |
697 |
696
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ¬ 𝑙 = 1 ) |
698 |
697
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) = ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) |
699 |
698
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) = Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) |
700 |
699
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) = ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) |
701 |
700
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) ) = ( 𝑗 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) ) |
702 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 1 + 1 ) ... 𝑗 ) ∈ Fin ) |
703 |
630
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
704 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 1 ∈ ℤ ) |
705 |
633
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 𝐾 ∈ ℤ ) |
706 |
686 687 691
|
ltled |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 1 ≤ ( 1 + 1 ) ) |
707 |
686 687 690 706 693
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 1 ≤ 𝑙 ) |
708 |
582
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 𝑗 ∈ ℝ ) |
709 |
587
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 𝐾 ∈ ℝ ) |
710 |
|
elfzle2 |
⊢ ( 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) → 𝑙 ≤ 𝑗 ) |
711 |
710
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 𝑙 ≤ 𝑗 ) |
712 |
591
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 𝑗 ≤ 𝐾 ) |
713 |
690 708 709 711 712
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 𝑙 ≤ 𝐾 ) |
714 |
704 705 689 707 713
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 𝑙 ∈ ( 1 ... 𝐾 ) ) |
715 |
703 714
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( 𝑑 ‘ 𝑙 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
716 |
715 652
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( 𝑑 ‘ 𝑙 ) ∈ ℤ ) |
717 |
716
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( 𝑑 ‘ 𝑙 ) ∈ ℂ ) |
718 |
689 704
|
zsubcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( 𝑙 − 1 ) ∈ ℤ ) |
719 |
|
leaddsub |
⊢ ( ( 1 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑙 ∈ ℝ ) → ( ( 1 + 1 ) ≤ 𝑙 ↔ 1 ≤ ( 𝑙 − 1 ) ) ) |
720 |
686 686 690 719
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( ( 1 + 1 ) ≤ 𝑙 ↔ 1 ≤ ( 𝑙 − 1 ) ) ) |
721 |
693 720
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 1 ≤ ( 𝑙 − 1 ) ) |
722 |
690 686
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( 𝑙 − 1 ) ∈ ℝ ) |
723 |
690
|
lem1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( 𝑙 − 1 ) ≤ 𝑙 ) |
724 |
722 690 709 723 713
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( 𝑙 − 1 ) ≤ 𝐾 ) |
725 |
704 705 718 721 724
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( 𝑙 − 1 ) ∈ ( 1 ... 𝐾 ) ) |
726 |
703 725
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( 𝑑 ‘ ( 𝑙 − 1 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
727 |
676
|
zcnd |
⊢ ( ( 𝑑 ‘ ( 𝑙 − 1 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ ( 𝑙 − 1 ) ) ∈ ℂ ) |
728 |
726 727
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( 𝑑 ‘ ( 𝑙 − 1 ) ) ∈ ℂ ) |
729 |
717 728
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ∈ ℂ ) |
730 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 1 ∈ ℂ ) |
731 |
702 729 730
|
fsumsub |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) = ( Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) 1 ) ) |
732 |
731
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) = ( ( ( 𝑑 ‘ 1 ) − 1 ) + ( Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) 1 ) ) ) |
733 |
732
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) = ( 𝑗 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + ( Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) 1 ) ) ) ) |
734 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 1 ∈ ℂ ) |
735 |
|
fsumconst |
⊢ ( ( ( ( 1 + 1 ) ... 𝑗 ) ∈ Fin ∧ 1 ∈ ℂ ) → Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) 1 = ( ( ♯ ‘ ( ( 1 + 1 ) ... 𝑗 ) ) · 1 ) ) |
736 |
702 734 735
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) 1 = ( ( ♯ ‘ ( ( 1 + 1 ) ... 𝑗 ) ) · 1 ) ) |
737 |
|
hashfzp1 |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 1 ) → ( ♯ ‘ ( ( 1 + 1 ) ... 𝑗 ) ) = ( 𝑗 − 1 ) ) |
738 |
627 737
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ♯ ‘ ( ( 1 + 1 ) ... 𝑗 ) ) = ( 𝑗 − 1 ) ) |
739 |
738
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( ♯ ‘ ( ( 1 + 1 ) ... 𝑗 ) ) · 1 ) = ( ( 𝑗 − 1 ) · 1 ) ) |
740 |
581
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝑗 ∈ ℂ ) |
741 |
740 734
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 − 1 ) ∈ ℂ ) |
742 |
741
|
mulridd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑗 − 1 ) · 1 ) = ( 𝑗 − 1 ) ) |
743 |
739 742
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( ♯ ‘ ( ( 1 + 1 ) ... 𝑗 ) ) · 1 ) = ( 𝑗 − 1 ) ) |
744 |
736 743
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) 1 = ( 𝑗 − 1 ) ) |
745 |
744
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) 1 ) = ( Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − ( 𝑗 − 1 ) ) ) |
746 |
745
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( ( 𝑑 ‘ 1 ) − 1 ) + ( Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) 1 ) ) = ( ( ( 𝑑 ‘ 1 ) − 1 ) + ( Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − ( 𝑗 − 1 ) ) ) ) |
747 |
746
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + ( Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) 1 ) ) ) = ( 𝑗 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + ( Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − ( 𝑗 − 1 ) ) ) ) ) |
748 |
702 729
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ∈ ℂ ) |
749 |
643 748 741
|
addsubassd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) − ( 𝑗 − 1 ) ) = ( ( ( 𝑑 ‘ 1 ) − 1 ) + ( Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − ( 𝑗 − 1 ) ) ) ) |
750 |
749
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( ( 𝑑 ‘ 1 ) − 1 ) + ( Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − ( 𝑗 − 1 ) ) ) = ( ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) − ( 𝑗 − 1 ) ) ) |
751 |
750
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + ( Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − ( 𝑗 − 1 ) ) ) ) = ( 𝑗 + ( ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) − ( 𝑗 − 1 ) ) ) ) |
752 |
643 748
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) ∈ ℂ ) |
753 |
740 752 741
|
addsubassd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑗 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) ) − ( 𝑗 − 1 ) ) = ( 𝑗 + ( ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) − ( 𝑗 − 1 ) ) ) ) |
754 |
753
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + ( ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) − ( 𝑗 − 1 ) ) ) = ( ( 𝑗 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) ) − ( 𝑗 − 1 ) ) ) |
755 |
740 752 741
|
addsubd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑗 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) ) − ( 𝑗 − 1 ) ) = ( ( 𝑗 − ( 𝑗 − 1 ) ) + ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) ) ) |
756 |
740 734
|
nncand |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 − ( 𝑗 − 1 ) ) = 1 ) |
757 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 1 ∈ ℤ ) |
758 |
624 623
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 − 1 ) ∈ ℤ ) |
759 |
630
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
760 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 1 ∈ ℤ ) |
761 |
633
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝐾 ∈ ℤ ) |
762 |
|
elfzelz |
⊢ ( 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) → 𝑙 ∈ ℤ ) |
763 |
762
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑙 ∈ ℤ ) |
764 |
763
|
peano2zd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑙 + 1 ) ∈ ℤ ) |
765 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 1 ∈ ℝ ) |
766 |
763
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑙 ∈ ℝ ) |
767 |
766 765
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑙 + 1 ) ∈ ℝ ) |
768 |
|
elfzle1 |
⊢ ( 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) → 1 ≤ 𝑙 ) |
769 |
768
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 1 ≤ 𝑙 ) |
770 |
766
|
lep1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑙 ≤ ( 𝑙 + 1 ) ) |
771 |
765 766 767 769 770
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 1 ≤ ( 𝑙 + 1 ) ) |
772 |
582
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑗 ∈ ℝ ) |
773 |
772 765
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑗 − 1 ) ∈ ℝ ) |
774 |
587
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝐾 ∈ ℝ ) |
775 |
774 765
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝐾 − 1 ) ∈ ℝ ) |
776 |
|
elfzle2 |
⊢ ( 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) → 𝑙 ≤ ( 𝑗 − 1 ) ) |
777 |
776
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑙 ≤ ( 𝑗 − 1 ) ) |
778 |
591
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑗 ≤ 𝐾 ) |
779 |
772 774 765 778
|
lesub1dd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑗 − 1 ) ≤ ( 𝐾 − 1 ) ) |
780 |
766 773 775 777 779
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑙 ≤ ( 𝐾 − 1 ) ) |
781 |
|
leaddsub |
⊢ ( ( 𝑙 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐾 ∈ ℝ ) → ( ( 𝑙 + 1 ) ≤ 𝐾 ↔ 𝑙 ≤ ( 𝐾 − 1 ) ) ) |
782 |
766 765 774 781
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( ( 𝑙 + 1 ) ≤ 𝐾 ↔ 𝑙 ≤ ( 𝐾 − 1 ) ) ) |
783 |
780 782
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑙 + 1 ) ≤ 𝐾 ) |
784 |
760 761 764 771 783
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑙 + 1 ) ∈ ( 1 ... 𝐾 ) ) |
785 |
759 784
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑑 ‘ ( 𝑙 + 1 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
786 |
|
elfzelz |
⊢ ( ( 𝑑 ‘ ( 𝑙 + 1 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ ( 𝑙 + 1 ) ) ∈ ℤ ) |
787 |
785 786
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑑 ‘ ( 𝑙 + 1 ) ) ∈ ℤ ) |
788 |
582 685
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 − 1 ) ∈ ℝ ) |
789 |
582
|
lem1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 − 1 ) ≤ 𝑗 ) |
790 |
788 582 587 789 591
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 − 1 ) ≤ 𝐾 ) |
791 |
790
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑗 − 1 ) ≤ 𝐾 ) |
792 |
766 773 774 777 791
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑙 ≤ 𝐾 ) |
793 |
760 761 763 769 792
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑙 ∈ ( 1 ... 𝐾 ) ) |
794 |
759 793
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑑 ‘ 𝑙 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
795 |
794 652
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑑 ‘ 𝑙 ) ∈ ℤ ) |
796 |
787 795
|
zsubcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( ( 𝑑 ‘ ( 𝑙 + 1 ) ) − ( 𝑑 ‘ 𝑙 ) ) ∈ ℤ ) |
797 |
796
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( ( 𝑑 ‘ ( 𝑙 + 1 ) ) − ( 𝑑 ‘ 𝑙 ) ) ∈ ℂ ) |
798 |
|
fvoveq1 |
⊢ ( 𝑙 = ( 𝑤 − 1 ) → ( 𝑑 ‘ ( 𝑙 + 1 ) ) = ( 𝑑 ‘ ( ( 𝑤 − 1 ) + 1 ) ) ) |
799 |
|
fveq2 |
⊢ ( 𝑙 = ( 𝑤 − 1 ) → ( 𝑑 ‘ 𝑙 ) = ( 𝑑 ‘ ( 𝑤 − 1 ) ) ) |
800 |
798 799
|
oveq12d |
⊢ ( 𝑙 = ( 𝑤 − 1 ) → ( ( 𝑑 ‘ ( 𝑙 + 1 ) ) − ( 𝑑 ‘ 𝑙 ) ) = ( ( 𝑑 ‘ ( ( 𝑤 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑤 − 1 ) ) ) ) |
801 |
757 757 758 797 800
|
fsumshft |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ( ( 𝑑 ‘ ( 𝑙 + 1 ) ) − ( 𝑑 ‘ 𝑙 ) ) = Σ 𝑤 ∈ ( ( 1 + 1 ) ... ( ( 𝑗 − 1 ) + 1 ) ) ( ( 𝑑 ‘ ( ( 𝑤 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑤 − 1 ) ) ) ) |
802 |
|
oveq1 |
⊢ ( 𝑤 = 𝑙 → ( 𝑤 − 1 ) = ( 𝑙 − 1 ) ) |
803 |
802
|
fvoveq1d |
⊢ ( 𝑤 = 𝑙 → ( 𝑑 ‘ ( ( 𝑤 − 1 ) + 1 ) ) = ( 𝑑 ‘ ( ( 𝑙 − 1 ) + 1 ) ) ) |
804 |
802
|
fveq2d |
⊢ ( 𝑤 = 𝑙 → ( 𝑑 ‘ ( 𝑤 − 1 ) ) = ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) |
805 |
803 804
|
oveq12d |
⊢ ( 𝑤 = 𝑙 → ( ( 𝑑 ‘ ( ( 𝑤 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑤 − 1 ) ) ) = ( ( 𝑑 ‘ ( ( 𝑙 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) |
806 |
|
nfcv |
⊢ Ⅎ 𝑙 ( ( 𝑑 ‘ ( ( 𝑤 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑤 − 1 ) ) ) |
807 |
|
nfcv |
⊢ Ⅎ 𝑤 ( ( 𝑑 ‘ ( ( 𝑙 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) |
808 |
805 806 807
|
cbvsum |
⊢ Σ 𝑤 ∈ ( ( 1 + 1 ) ... ( ( 𝑗 − 1 ) + 1 ) ) ( ( 𝑑 ‘ ( ( 𝑤 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑤 − 1 ) ) ) = Σ 𝑙 ∈ ( ( 1 + 1 ) ... ( ( 𝑗 − 1 ) + 1 ) ) ( ( 𝑑 ‘ ( ( 𝑙 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) |
809 |
808
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑤 ∈ ( ( 1 + 1 ) ... ( ( 𝑗 − 1 ) + 1 ) ) ( ( 𝑑 ‘ ( ( 𝑤 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑤 − 1 ) ) ) = Σ 𝑙 ∈ ( ( 1 + 1 ) ... ( ( 𝑗 − 1 ) + 1 ) ) ( ( 𝑑 ‘ ( ( 𝑙 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) |
810 |
801 809
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ( ( 𝑑 ‘ ( 𝑙 + 1 ) ) − ( 𝑑 ‘ 𝑙 ) ) = Σ 𝑙 ∈ ( ( 1 + 1 ) ... ( ( 𝑗 − 1 ) + 1 ) ) ( ( 𝑑 ‘ ( ( 𝑙 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) |
811 |
740 734
|
npcand |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑗 − 1 ) + 1 ) = 𝑗 ) |
812 |
811
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 1 + 1 ) ... ( ( 𝑗 − 1 ) + 1 ) ) = ( ( 1 + 1 ) ... 𝑗 ) ) |
813 |
812
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( ( 1 + 1 ) ... ( ( 𝑗 − 1 ) + 1 ) ) ( ( 𝑑 ‘ ( ( 𝑙 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) = Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ ( ( 𝑙 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) |
814 |
690
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 𝑙 ∈ ℂ ) |
815 |
814 730
|
npcand |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( ( 𝑙 − 1 ) + 1 ) = 𝑙 ) |
816 |
815
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( 𝑑 ‘ ( ( 𝑙 − 1 ) + 1 ) ) = ( 𝑑 ‘ 𝑙 ) ) |
817 |
816
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( ( 𝑑 ‘ ( ( 𝑙 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) = ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) |
818 |
817
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ ( ( 𝑙 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) = Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) |
819 |
813 818
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( ( 1 + 1 ) ... ( ( 𝑗 − 1 ) + 1 ) ) ( ( 𝑑 ‘ ( ( 𝑙 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) = Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) |
820 |
810 819
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ( ( 𝑑 ‘ ( 𝑙 + 1 ) ) − ( 𝑑 ‘ 𝑙 ) ) = Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) |
821 |
820
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) = Σ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ( ( 𝑑 ‘ ( 𝑙 + 1 ) ) − ( 𝑑 ‘ 𝑙 ) ) ) |
822 |
821
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) = ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ( ( 𝑑 ‘ ( 𝑙 + 1 ) ) − ( 𝑑 ‘ 𝑙 ) ) ) ) |
823 |
756 822
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑗 − ( 𝑗 − 1 ) ) + ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) ) = ( 1 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ( ( 𝑑 ‘ ( 𝑙 + 1 ) ) − ( 𝑑 ‘ 𝑙 ) ) ) ) ) |
824 |
|
fveq2 |
⊢ ( 𝑟 = 𝑙 → ( 𝑑 ‘ 𝑟 ) = ( 𝑑 ‘ 𝑙 ) ) |
825 |
|
fveq2 |
⊢ ( 𝑟 = ( 𝑙 + 1 ) → ( 𝑑 ‘ 𝑟 ) = ( 𝑑 ‘ ( 𝑙 + 1 ) ) ) |
826 |
|
fveq2 |
⊢ ( 𝑟 = 1 → ( 𝑑 ‘ 𝑟 ) = ( 𝑑 ‘ 1 ) ) |
827 |
|
fveq2 |
⊢ ( 𝑟 = ( ( 𝑗 − 1 ) + 1 ) → ( 𝑑 ‘ 𝑟 ) = ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) ) |
828 |
811 627
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑗 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
829 |
630
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
830 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → 1 ∈ ℤ ) |
831 |
633
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → 𝐾 ∈ ℤ ) |
832 |
|
elfzelz |
⊢ ( 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) → 𝑟 ∈ ℤ ) |
833 |
832
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → 𝑟 ∈ ℤ ) |
834 |
|
elfzle1 |
⊢ ( 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) → 1 ≤ 𝑟 ) |
835 |
834
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → 1 ≤ 𝑟 ) |
836 |
833
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → 𝑟 ∈ ℝ ) |
837 |
582
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → 𝑗 ∈ ℝ ) |
838 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → 1 ∈ ℝ ) |
839 |
837 838
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → ( 𝑗 − 1 ) ∈ ℝ ) |
840 |
839 838
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → ( ( 𝑗 − 1 ) + 1 ) ∈ ℝ ) |
841 |
587
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → 𝐾 ∈ ℝ ) |
842 |
|
elfzle2 |
⊢ ( 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) → 𝑟 ≤ ( ( 𝑗 − 1 ) + 1 ) ) |
843 |
842
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → 𝑟 ≤ ( ( 𝑗 − 1 ) + 1 ) ) |
844 |
811 591
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑗 − 1 ) + 1 ) ≤ 𝐾 ) |
845 |
844
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → ( ( 𝑗 − 1 ) + 1 ) ≤ 𝐾 ) |
846 |
836 840 841 843 845
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → 𝑟 ≤ 𝐾 ) |
847 |
830 831 833 835 846
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → 𝑟 ∈ ( 1 ... 𝐾 ) ) |
848 |
829 847
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → ( 𝑑 ‘ 𝑟 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
849 |
|
elfzelz |
⊢ ( ( 𝑑 ‘ 𝑟 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ 𝑟 ) ∈ ℤ ) |
850 |
848 849
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → ( 𝑑 ‘ 𝑟 ) ∈ ℤ ) |
851 |
850
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → ( 𝑑 ‘ 𝑟 ) ∈ ℂ ) |
852 |
824 825 826 827 758 828 851
|
telfsum2 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ( ( 𝑑 ‘ ( 𝑙 + 1 ) ) − ( 𝑑 ‘ 𝑙 ) ) = ( ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) |
853 |
852
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ( ( 𝑑 ‘ ( 𝑙 + 1 ) ) − ( 𝑑 ‘ 𝑙 ) ) ) = ( ( ( 𝑑 ‘ 1 ) − 1 ) + ( ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) ) |
854 |
853
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 1 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ( ( 𝑑 ‘ ( 𝑙 + 1 ) ) − ( 𝑑 ‘ 𝑙 ) ) ) ) = ( 1 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + ( ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) ) ) |
855 |
811
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) = ( 𝑑 ‘ 𝑗 ) ) |
856 |
630 579
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑑 ‘ 𝑗 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
857 |
|
elfzelz |
⊢ ( ( 𝑑 ‘ 𝑗 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ 𝑗 ) ∈ ℤ ) |
858 |
856 857
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑑 ‘ 𝑗 ) ∈ ℤ ) |
859 |
855 858
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) ∈ ℤ ) |
860 |
859
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) ∈ ℂ ) |
861 |
640
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑑 ‘ 1 ) ∈ ℝ ) |
862 |
861
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑑 ‘ 1 ) ∈ ℂ ) |
863 |
860 862
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ∈ ℂ ) |
864 |
734 643 863
|
addassd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 1 + ( ( 𝑑 ‘ 1 ) − 1 ) ) + ( ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) = ( 1 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + ( ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) ) ) |
865 |
864
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 1 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + ( ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) ) = ( ( 1 + ( ( 𝑑 ‘ 1 ) − 1 ) ) + ( ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) ) |
866 |
734 862
|
pncan3d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 1 + ( ( 𝑑 ‘ 1 ) − 1 ) ) = ( 𝑑 ‘ 1 ) ) |
867 |
866
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 1 + ( ( 𝑑 ‘ 1 ) − 1 ) ) + ( ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) = ( ( 𝑑 ‘ 1 ) + ( ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) ) |
868 |
862 860
|
pncan3d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑑 ‘ 1 ) + ( ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) = ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) ) |
869 |
868 855
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑑 ‘ 1 ) + ( ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) = ( 𝑑 ‘ 𝑗 ) ) |
870 |
867 869
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 1 + ( ( 𝑑 ‘ 1 ) − 1 ) ) + ( ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) = ( 𝑑 ‘ 𝑗 ) ) |
871 |
865 870
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 1 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + ( ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) ) = ( 𝑑 ‘ 𝑗 ) ) |
872 |
854 871
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 1 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ( ( 𝑑 ‘ ( 𝑙 + 1 ) ) − ( 𝑑 ‘ 𝑙 ) ) ) ) = ( 𝑑 ‘ 𝑗 ) ) |
873 |
823 872
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑗 − ( 𝑗 − 1 ) ) + ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) ) = ( 𝑑 ‘ 𝑗 ) ) |
874 |
755 873
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑗 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) ) − ( 𝑗 − 1 ) ) = ( 𝑑 ‘ 𝑗 ) ) |
875 |
754 874
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + ( ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) − ( 𝑗 − 1 ) ) ) = ( 𝑑 ‘ 𝑗 ) ) |
876 |
751 875
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + ( Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − ( 𝑗 − 1 ) ) ) ) = ( 𝑑 ‘ 𝑗 ) ) |
877 |
747 876
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + ( Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) 1 ) ) ) = ( 𝑑 ‘ 𝑗 ) ) |
878 |
733 877
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) = ( 𝑑 ‘ 𝑗 ) ) |
879 |
701 878
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) ) = ( 𝑑 ‘ 𝑗 ) ) |
880 |
684 879
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) = ( 𝑑 ‘ 𝑗 ) ) |
881 |
621 880
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) if ( 𝑙 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) ) = ( 𝑑 ‘ 𝑗 ) ) |
882 |
604 881
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑙 ) ) = ( 𝑑 ‘ 𝑗 ) ) |
883 |
882
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑙 ) ) = ( 𝑑 ‘ 𝑗 ) ) |
884 |
883
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑙 ) ) ) = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ 𝑗 ) ) ) |
885 |
|
nfcv |
⊢ Ⅎ 𝑞 ( 𝑑 ‘ 𝑗 ) |
886 |
|
nfcv |
⊢ Ⅎ 𝑗 ( 𝑑 ‘ 𝑞 ) |
887 |
|
fveq2 |
⊢ ( 𝑗 = 𝑞 → ( 𝑑 ‘ 𝑗 ) = ( 𝑑 ‘ 𝑞 ) ) |
888 |
885 886 887
|
cbvmpt |
⊢ ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ 𝑗 ) ) = ( 𝑞 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ 𝑞 ) ) |
889 |
888
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ 𝑗 ) ) = ( 𝑞 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ 𝑞 ) ) ) |
890 |
884 889
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑙 ) ) ) = ( 𝑞 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ 𝑞 ) ) ) |
891 |
558 890
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) = ( 𝑞 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ 𝑞 ) ) ) |
892 |
33 891
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑑 ) ) = ( 𝑞 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ 𝑞 ) ) ) |
893 |
56
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝑑 Fn ( 1 ... 𝐾 ) ) |
894 |
|
dffn5 |
⊢ ( 𝑑 Fn ( 1 ... 𝐾 ) ↔ 𝑑 = ( 𝑞 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ 𝑞 ) ) ) |
895 |
894
|
biimpi |
⊢ ( 𝑑 Fn ( 1 ... 𝐾 ) → 𝑑 = ( 𝑞 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ 𝑞 ) ) ) |
896 |
893 895
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝑑 = ( 𝑞 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ 𝑞 ) ) ) |
897 |
896
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑞 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ 𝑞 ) ) = 𝑑 ) |
898 |
892 897
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑑 ) ) = 𝑑 ) |
899 |
898
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑑 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑑 ) ) = 𝑑 ) |