| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sticksstones12a.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 2 |
|
sticksstones12a.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
| 3 |
|
sticksstones12a.3 |
⊢ 𝐹 = ( 𝑎 ∈ 𝐴 ↦ ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ) |
| 4 |
|
sticksstones12a.4 |
⊢ 𝐺 = ( 𝑏 ∈ 𝐵 ↦ if ( 𝐾 = 0 , { 〈 1 , 𝑁 〉 } , ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) ) |
| 5 |
|
sticksstones12a.5 |
⊢ 𝐴 = { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } |
| 6 |
|
sticksstones12a.6 |
⊢ 𝐵 = { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) } |
| 7 |
4
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝐺 = ( 𝑏 ∈ 𝐵 ↦ if ( 𝐾 = 0 , { 〈 1 , 𝑁 〉 } , ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) ) ) |
| 8 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 9 |
2
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝐾 ) |
| 10 |
8 9
|
ltned |
⊢ ( 𝜑 → 0 ≠ 𝐾 ) |
| 11 |
10
|
necomd |
⊢ ( 𝜑 → 𝐾 ≠ 0 ) |
| 12 |
11
|
neneqd |
⊢ ( 𝜑 → ¬ 𝐾 = 0 ) |
| 13 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑏 = 𝑑 ) → ¬ 𝐾 = 0 ) |
| 14 |
13
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑏 = 𝑑 ) → if ( 𝐾 = 0 , { 〈 1 , 𝑁 〉 } , ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) |
| 15 |
|
fveq1 |
⊢ ( 𝑏 = 𝑑 → ( 𝑏 ‘ 𝐾 ) = ( 𝑑 ‘ 𝐾 ) ) |
| 16 |
15
|
oveq2d |
⊢ ( 𝑏 = 𝑑 → ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) = ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ) |
| 17 |
|
fveq1 |
⊢ ( 𝑏 = 𝑑 → ( 𝑏 ‘ 1 ) = ( 𝑑 ‘ 1 ) ) |
| 18 |
17
|
oveq1d |
⊢ ( 𝑏 = 𝑑 → ( ( 𝑏 ‘ 1 ) − 1 ) = ( ( 𝑑 ‘ 1 ) − 1 ) ) |
| 19 |
|
fveq1 |
⊢ ( 𝑏 = 𝑑 → ( 𝑏 ‘ 𝑘 ) = ( 𝑑 ‘ 𝑘 ) ) |
| 20 |
|
fveq1 |
⊢ ( 𝑏 = 𝑑 → ( 𝑏 ‘ ( 𝑘 − 1 ) ) = ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) |
| 21 |
19 20
|
oveq12d |
⊢ ( 𝑏 = 𝑑 → ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) = ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) |
| 22 |
21
|
oveq1d |
⊢ ( 𝑏 = 𝑑 → ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) = ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) |
| 23 |
18 22
|
ifeq12d |
⊢ ( 𝑏 = 𝑑 → if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) |
| 24 |
16 23
|
ifeq12d |
⊢ ( 𝑏 = 𝑑 → if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) |
| 25 |
24
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑏 = 𝑑 ) → if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) |
| 26 |
25
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑏 = 𝑑 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) |
| 27 |
26
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑏 = 𝑑 ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) |
| 28 |
14 27
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑏 = 𝑑 ) → if ( 𝐾 = 0 , { 〈 1 , 𝑁 〉 } , ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) |
| 29 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝑑 ∈ 𝐵 ) |
| 30 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 1 ... ( 𝐾 + 1 ) ) ∈ Fin ) |
| 31 |
30
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ∈ V ) |
| 32 |
7 28 29 31
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑑 ) = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) |
| 33 |
32
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑑 ) ) = ( 𝐹 ‘ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) ) |
| 34 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝐹 = ( 𝑎 ∈ 𝐴 ↦ ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ) ) |
| 35 |
|
simpll |
⊢ ( ( ( 𝑎 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑎 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) |
| 36 |
35
|
fveq1d |
⊢ ( ( ( 𝑎 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → ( 𝑎 ‘ 𝑙 ) = ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑙 ) ) |
| 37 |
36
|
sumeq2dv |
⊢ ( ( 𝑎 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) = Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑙 ) ) |
| 38 |
37
|
oveq2d |
⊢ ( ( 𝑎 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) = ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑙 ) ) ) |
| 39 |
38
|
mpteq2dva |
⊢ ( 𝑎 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑙 ) ) ) ) |
| 40 |
39
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑎 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑙 ) ) ) ) |
| 41 |
|
eleq1 |
⊢ ( ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) = if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) → ( ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ∈ ℕ0 ↔ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ∈ ℕ0 ) ) |
| 42 |
|
eleq1 |
⊢ ( if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) → ( if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ∈ ℕ0 ↔ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ∈ ℕ0 ) ) |
| 43 |
6
|
eleq2i |
⊢ ( 𝑑 ∈ 𝐵 ↔ 𝑑 ∈ { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) } ) |
| 44 |
|
vex |
⊢ 𝑑 ∈ V |
| 45 |
|
feq1 |
⊢ ( 𝑓 = 𝑑 → ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ↔ 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) ) |
| 46 |
|
fveq1 |
⊢ ( 𝑓 = 𝑑 → ( 𝑓 ‘ 𝑥 ) = ( 𝑑 ‘ 𝑥 ) ) |
| 47 |
|
fveq1 |
⊢ ( 𝑓 = 𝑑 → ( 𝑓 ‘ 𝑦 ) = ( 𝑑 ‘ 𝑦 ) ) |
| 48 |
46 47
|
breq12d |
⊢ ( 𝑓 = 𝑑 → ( ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ↔ ( 𝑑 ‘ 𝑥 ) < ( 𝑑 ‘ 𝑦 ) ) ) |
| 49 |
48
|
imbi2d |
⊢ ( 𝑓 = 𝑑 → ( ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑥 < 𝑦 → ( 𝑑 ‘ 𝑥 ) < ( 𝑑 ‘ 𝑦 ) ) ) ) |
| 50 |
49
|
2ralbidv |
⊢ ( 𝑓 = 𝑑 → ( ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑑 ‘ 𝑥 ) < ( 𝑑 ‘ 𝑦 ) ) ) ) |
| 51 |
45 50
|
anbi12d |
⊢ ( 𝑓 = 𝑑 → ( ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑑 ‘ 𝑥 ) < ( 𝑑 ‘ 𝑦 ) ) ) ) ) |
| 52 |
44 51
|
elab |
⊢ ( 𝑑 ∈ { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) } ↔ ( 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑑 ‘ 𝑥 ) < ( 𝑑 ‘ 𝑦 ) ) ) ) |
| 53 |
43 52
|
bitri |
⊢ ( 𝑑 ∈ 𝐵 ↔ ( 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑑 ‘ 𝑥 ) < ( 𝑑 ‘ 𝑦 ) ) ) ) |
| 54 |
53
|
biimpi |
⊢ ( 𝑑 ∈ 𝐵 → ( 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑑 ‘ 𝑥 ) < ( 𝑑 ‘ 𝑦 ) ) ) ) |
| 55 |
54
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑑 ‘ 𝑥 ) < ( 𝑑 ‘ 𝑦 ) ) ) ) |
| 56 |
55
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 57 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 1 ∈ ℤ ) |
| 59 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
| 60 |
59
|
nn0zd |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
| 61 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝐾 ∈ ℤ ) |
| 62 |
2
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝐾 ) |
| 63 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 1 ≤ 𝐾 ) |
| 64 |
2
|
nnred |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
| 65 |
64
|
leidd |
⊢ ( 𝜑 → 𝐾 ≤ 𝐾 ) |
| 66 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝐾 ≤ 𝐾 ) |
| 67 |
58 61 61 63 66
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝐾 ∈ ( 1 ... 𝐾 ) ) |
| 68 |
56 67
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑑 ‘ 𝐾 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 69 |
|
elfzle2 |
⊢ ( ( 𝑑 ‘ 𝐾 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ 𝐾 ) ≤ ( 𝑁 + 𝐾 ) ) |
| 70 |
68 69
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑑 ‘ 𝐾 ) ≤ ( 𝑁 + 𝐾 ) ) |
| 71 |
70
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑑 ‘ 𝐾 ) ≤ ( 𝑁 + 𝐾 ) ) |
| 72 |
71
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝑑 ‘ 𝐾 ) ≤ ( 𝑁 + 𝐾 ) ) |
| 73 |
|
elfznn |
⊢ ( ( 𝑑 ‘ 𝐾 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ 𝐾 ) ∈ ℕ ) |
| 74 |
73
|
nnnn0d |
⊢ ( ( 𝑑 ‘ 𝐾 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ 𝐾 ) ∈ ℕ0 ) |
| 75 |
68 74
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑑 ‘ 𝐾 ) ∈ ℕ0 ) |
| 76 |
75
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑑 ‘ 𝐾 ) ∈ ℕ0 ) |
| 77 |
76
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝑑 ‘ 𝐾 ) ∈ ℕ0 ) |
| 78 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = ( 𝐾 + 1 ) ) → 𝑁 ∈ ℕ0 ) |
| 79 |
59
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = ( 𝐾 + 1 ) ) → 𝐾 ∈ ℕ0 ) |
| 80 |
78 79
|
nn0addcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝑁 + 𝐾 ) ∈ ℕ0 ) |
| 81 |
|
nn0sub |
⊢ ( ( ( 𝑑 ‘ 𝐾 ) ∈ ℕ0 ∧ ( 𝑁 + 𝐾 ) ∈ ℕ0 ) → ( ( 𝑑 ‘ 𝐾 ) ≤ ( 𝑁 + 𝐾 ) ↔ ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ∈ ℕ0 ) ) |
| 82 |
77 80 81
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = ( 𝐾 + 1 ) ) → ( ( 𝑑 ‘ 𝐾 ) ≤ ( 𝑁 + 𝐾 ) ↔ ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ∈ ℕ0 ) ) |
| 83 |
72 82
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = ( 𝐾 + 1 ) ) → ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ∈ ℕ0 ) |
| 84 |
|
eleq1 |
⊢ ( ( ( 𝑑 ‘ 1 ) − 1 ) = if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) → ( ( ( 𝑑 ‘ 1 ) − 1 ) ∈ ℕ0 ↔ if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ∈ ℕ0 ) ) |
| 85 |
|
eleq1 |
⊢ ( ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) = if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) → ( ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ∈ ℕ0 ↔ if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ∈ ℕ0 ) ) |
| 86 |
|
1le1 |
⊢ 1 ≤ 1 |
| 87 |
86
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 1 ≤ 1 ) |
| 88 |
58 61 58 87 63
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 1 ∈ ( 1 ... 𝐾 ) ) |
| 89 |
56 88
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑑 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 90 |
|
elfznn |
⊢ ( ( 𝑑 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ 1 ) ∈ ℕ ) |
| 91 |
89 90
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑑 ‘ 1 ) ∈ ℕ ) |
| 92 |
|
nnm1nn0 |
⊢ ( ( 𝑑 ‘ 1 ) ∈ ℕ → ( ( 𝑑 ‘ 1 ) − 1 ) ∈ ℕ0 ) |
| 93 |
91 92
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( ( 𝑑 ‘ 1 ) − 1 ) ∈ ℕ0 ) |
| 94 |
93
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( ( 𝑑 ‘ 1 ) − 1 ) ∈ ℕ0 ) |
| 95 |
94
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( ( 𝑑 ‘ 1 ) − 1 ) ∈ ℕ0 ) |
| 96 |
95
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ 𝑘 = 1 ) → ( ( 𝑑 ‘ 1 ) − 1 ) ∈ ℕ0 ) |
| 97 |
56
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 98 |
|
1zzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ∈ ℤ ) |
| 99 |
61
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝐾 ∈ ℤ ) |
| 100 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) → 𝑘 ∈ ℕ ) |
| 101 |
100
|
nnzd |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) → 𝑘 ∈ ℤ ) |
| 102 |
101
|
ad3antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ℤ ) |
| 103 |
|
elfzle1 |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) → 1 ≤ 𝑘 ) |
| 104 |
103
|
ad3antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ≤ 𝑘 ) |
| 105 |
|
neqne |
⊢ ( ¬ 𝑘 = ( 𝐾 + 1 ) → 𝑘 ≠ ( 𝐾 + 1 ) ) |
| 106 |
105
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 ≠ ( 𝐾 + 1 ) ) |
| 107 |
106
|
necomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝐾 + 1 ) ≠ 𝑘 ) |
| 108 |
100
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 ∈ ℕ ) |
| 109 |
108
|
nnred |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 ∈ ℝ ) |
| 110 |
64
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝐾 ∈ ℝ ) |
| 111 |
|
1red |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 1 ∈ ℝ ) |
| 112 |
110 111
|
readdcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝐾 + 1 ) ∈ ℝ ) |
| 113 |
|
elfzle2 |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) → 𝑘 ≤ ( 𝐾 + 1 ) ) |
| 114 |
113
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 ≤ ( 𝐾 + 1 ) ) |
| 115 |
109 112 114
|
leltned |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝑘 < ( 𝐾 + 1 ) ↔ ( 𝐾 + 1 ) ≠ 𝑘 ) ) |
| 116 |
107 115
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 < ( 𝐾 + 1 ) ) |
| 117 |
101
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 ∈ ℤ ) |
| 118 |
61
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝐾 ∈ ℤ ) |
| 119 |
|
zleltp1 |
⊢ ( ( 𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 𝑘 ≤ 𝐾 ↔ 𝑘 < ( 𝐾 + 1 ) ) ) |
| 120 |
117 118 119
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝑘 ≤ 𝐾 ↔ 𝑘 < ( 𝐾 + 1 ) ) ) |
| 121 |
116 120
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 ≤ 𝐾 ) |
| 122 |
121
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ≤ 𝐾 ) |
| 123 |
98 99 102 104 122
|
elfzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ( 1 ... 𝐾 ) ) |
| 124 |
97 123
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑑 ‘ 𝑘 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 125 |
|
elfznn |
⊢ ( ( 𝑑 ‘ 𝑘 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ 𝑘 ) ∈ ℕ ) |
| 126 |
125
|
nnzd |
⊢ ( ( 𝑑 ‘ 𝑘 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ 𝑘 ) ∈ ℤ ) |
| 127 |
124 126
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑑 ‘ 𝑘 ) ∈ ℤ ) |
| 128 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ∈ ℤ ) |
| 129 |
60
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = 1 ) → 𝐾 ∈ ℤ ) |
| 130 |
129
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝐾 ∈ ℤ ) |
| 131 |
101
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑘 ∈ ℤ ) |
| 132 |
131
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ℤ ) |
| 133 |
132
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ℤ ) |
| 134 |
133 128
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ∈ ℤ ) |
| 135 |
|
neqne |
⊢ ( ¬ 𝑘 = 1 → 𝑘 ≠ 1 ) |
| 136 |
135
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ≠ 1 ) |
| 137 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 138 |
137
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ∈ ℝ ) |
| 139 |
133
|
zred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ℝ ) |
| 140 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
| 141 |
140 103
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ≤ 𝑘 ) |
| 142 |
138 139 141
|
leltned |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 1 < 𝑘 ↔ 𝑘 ≠ 1 ) ) |
| 143 |
136 142
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 < 𝑘 ) |
| 144 |
128 133
|
zltp1led |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 1 < 𝑘 ↔ ( 1 + 1 ) ≤ 𝑘 ) ) |
| 145 |
143 144
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 1 + 1 ) ≤ 𝑘 ) |
| 146 |
|
leaddsub |
⊢ ( ( 1 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( ( 1 + 1 ) ≤ 𝑘 ↔ 1 ≤ ( 𝑘 − 1 ) ) ) |
| 147 |
138 138 139 146
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 1 + 1 ) ≤ 𝑘 ↔ 1 ≤ ( 𝑘 − 1 ) ) ) |
| 148 |
145 147
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ≤ ( 𝑘 − 1 ) ) |
| 149 |
134
|
zred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ∈ ℝ ) |
| 150 |
64
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝐾 ∈ ℝ ) |
| 151 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ∈ ℝ ) |
| 152 |
150 151
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝐾 + 1 ) ∈ ℝ ) |
| 153 |
152 151
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝐾 + 1 ) − 1 ) ∈ ℝ ) |
| 154 |
113
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ≤ ( 𝐾 + 1 ) ) |
| 155 |
139 152 151 154
|
lesub1dd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ≤ ( ( 𝐾 + 1 ) − 1 ) ) |
| 156 |
64
|
recnd |
⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
| 157 |
156
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝐾 ∈ ℂ ) |
| 158 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ∈ ℂ ) |
| 159 |
157 158
|
pncand |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝐾 + 1 ) − 1 ) = 𝐾 ) |
| 160 |
65
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝐾 ≤ 𝐾 ) |
| 161 |
159 160
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝐾 + 1 ) − 1 ) ≤ 𝐾 ) |
| 162 |
149 153 150 155 161
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ≤ 𝐾 ) |
| 163 |
128 130 134 148 162
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ∈ ( 1 ... 𝐾 ) ) |
| 164 |
163
|
ad5ant135 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ∈ ( 1 ... 𝐾 ) ) |
| 165 |
97 164
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑑 ‘ ( 𝑘 − 1 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 166 |
|
elfznn |
⊢ ( ( 𝑑 ‘ ( 𝑘 − 1 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ ( 𝑘 − 1 ) ) ∈ ℕ ) |
| 167 |
165 166
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑑 ‘ ( 𝑘 − 1 ) ) ∈ ℕ ) |
| 168 |
167
|
nnzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑑 ‘ ( 𝑘 − 1 ) ) ∈ ℤ ) |
| 169 |
127 168
|
zsubcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ∈ ℤ ) |
| 170 |
169 98
|
zsubcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ∈ ℤ ) |
| 171 |
108
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ℕ ) |
| 172 |
171
|
nnred |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ℝ ) |
| 173 |
172
|
ltm1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) < 𝑘 ) |
| 174 |
164 123
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝑘 − 1 ) ∈ ( 1 ... 𝐾 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ) |
| 175 |
55
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑑 ‘ 𝑥 ) < ( 𝑑 ‘ 𝑦 ) ) ) |
| 176 |
175
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑑 ‘ 𝑥 ) < ( 𝑑 ‘ 𝑦 ) ) ) |
| 177 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑘 − 1 ) → ( 𝑥 < 𝑦 ↔ ( 𝑘 − 1 ) < 𝑦 ) ) |
| 178 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑘 − 1 ) → ( 𝑑 ‘ 𝑥 ) = ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) |
| 179 |
178
|
breq1d |
⊢ ( 𝑥 = ( 𝑘 − 1 ) → ( ( 𝑑 ‘ 𝑥 ) < ( 𝑑 ‘ 𝑦 ) ↔ ( 𝑑 ‘ ( 𝑘 − 1 ) ) < ( 𝑑 ‘ 𝑦 ) ) ) |
| 180 |
177 179
|
imbi12d |
⊢ ( 𝑥 = ( 𝑘 − 1 ) → ( ( 𝑥 < 𝑦 → ( 𝑑 ‘ 𝑥 ) < ( 𝑑 ‘ 𝑦 ) ) ↔ ( ( 𝑘 − 1 ) < 𝑦 → ( 𝑑 ‘ ( 𝑘 − 1 ) ) < ( 𝑑 ‘ 𝑦 ) ) ) ) |
| 181 |
|
breq2 |
⊢ ( 𝑦 = 𝑘 → ( ( 𝑘 − 1 ) < 𝑦 ↔ ( 𝑘 − 1 ) < 𝑘 ) ) |
| 182 |
|
fveq2 |
⊢ ( 𝑦 = 𝑘 → ( 𝑑 ‘ 𝑦 ) = ( 𝑑 ‘ 𝑘 ) ) |
| 183 |
182
|
breq2d |
⊢ ( 𝑦 = 𝑘 → ( ( 𝑑 ‘ ( 𝑘 − 1 ) ) < ( 𝑑 ‘ 𝑦 ) ↔ ( 𝑑 ‘ ( 𝑘 − 1 ) ) < ( 𝑑 ‘ 𝑘 ) ) ) |
| 184 |
181 183
|
imbi12d |
⊢ ( 𝑦 = 𝑘 → ( ( ( 𝑘 − 1 ) < 𝑦 → ( 𝑑 ‘ ( 𝑘 − 1 ) ) < ( 𝑑 ‘ 𝑦 ) ) ↔ ( ( 𝑘 − 1 ) < 𝑘 → ( 𝑑 ‘ ( 𝑘 − 1 ) ) < ( 𝑑 ‘ 𝑘 ) ) ) ) |
| 185 |
180 184
|
rspc2va |
⊢ ( ( ( ( 𝑘 − 1 ) ∈ ( 1 ... 𝐾 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑑 ‘ 𝑥 ) < ( 𝑑 ‘ 𝑦 ) ) ) → ( ( 𝑘 − 1 ) < 𝑘 → ( 𝑑 ‘ ( 𝑘 − 1 ) ) < ( 𝑑 ‘ 𝑘 ) ) ) |
| 186 |
174 176 185
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝑘 − 1 ) < 𝑘 → ( 𝑑 ‘ ( 𝑘 − 1 ) ) < ( 𝑑 ‘ 𝑘 ) ) ) |
| 187 |
173 186
|
mpd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑑 ‘ ( 𝑘 − 1 ) ) < ( 𝑑 ‘ 𝑘 ) ) |
| 188 |
167
|
nnred |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑑 ‘ ( 𝑘 − 1 ) ) ∈ ℝ ) |
| 189 |
127
|
zred |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑑 ‘ 𝑘 ) ∈ ℝ ) |
| 190 |
188 189
|
posdifd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝑑 ‘ ( 𝑘 − 1 ) ) < ( 𝑑 ‘ 𝑘 ) ↔ 0 < ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) ) |
| 191 |
187 190
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 0 < ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) |
| 192 |
|
0zd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 0 ∈ ℤ ) |
| 193 |
192 169
|
zltlem1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 0 < ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ↔ 0 ≤ ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) |
| 194 |
191 193
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 0 ≤ ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) |
| 195 |
170 194
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ∈ ℤ ∧ 0 ≤ ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) |
| 196 |
|
elnn0z |
⊢ ( ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ∈ ℕ0 ↔ ( ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ∈ ℤ ∧ 0 ≤ ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) |
| 197 |
195 196
|
sylibr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ∈ ℕ0 ) |
| 198 |
84 85 96 197
|
ifbothda |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ∈ ℕ0 ) |
| 199 |
41 42 83 198
|
ifbothda |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ∈ ℕ0 ) |
| 200 |
|
eqid |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) |
| 201 |
199 200
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) |
| 202 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) |
| 203 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = 𝑖 ) → 𝑘 = 𝑖 ) |
| 204 |
203
|
eqeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = 𝑖 ) → ( 𝑘 = ( 𝐾 + 1 ) ↔ 𝑖 = ( 𝐾 + 1 ) ) ) |
| 205 |
203
|
eqeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = 𝑖 ) → ( 𝑘 = 1 ↔ 𝑖 = 1 ) ) |
| 206 |
203
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = 𝑖 ) → ( 𝑑 ‘ 𝑘 ) = ( 𝑑 ‘ 𝑖 ) ) |
| 207 |
203
|
fvoveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = 𝑖 ) → ( 𝑑 ‘ ( 𝑘 − 1 ) ) = ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) |
| 208 |
206 207
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = 𝑖 ) → ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) = ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) ) |
| 209 |
208
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = 𝑖 ) → ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) = ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) |
| 210 |
205 209
|
ifbieq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = 𝑖 ) → if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = if ( 𝑖 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) |
| 211 |
204 210
|
ifbieq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = 𝑖 ) → if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) ) |
| 212 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
| 213 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ∈ V ) |
| 214 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( ( 𝑑 ‘ 1 ) − 1 ) ∈ V ) |
| 215 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ∈ V ) |
| 216 |
214 215
|
ifcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → if ( 𝑖 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ∈ V ) |
| 217 |
213 216
|
ifcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) ∈ V ) |
| 218 |
202 211 212 217
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑖 ) = if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) ) |
| 219 |
218
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑖 ) = Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) ) |
| 220 |
|
eqeq1 |
⊢ ( 𝑖 = 𝑘 → ( 𝑖 = ( 𝐾 + 1 ) ↔ 𝑘 = ( 𝐾 + 1 ) ) ) |
| 221 |
|
eqeq1 |
⊢ ( 𝑖 = 𝑘 → ( 𝑖 = 1 ↔ 𝑘 = 1 ) ) |
| 222 |
|
fveq2 |
⊢ ( 𝑖 = 𝑘 → ( 𝑑 ‘ 𝑖 ) = ( 𝑑 ‘ 𝑘 ) ) |
| 223 |
|
fvoveq1 |
⊢ ( 𝑖 = 𝑘 → ( 𝑑 ‘ ( 𝑖 − 1 ) ) = ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) |
| 224 |
222 223
|
oveq12d |
⊢ ( 𝑖 = 𝑘 → ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) = ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) |
| 225 |
224
|
oveq1d |
⊢ ( 𝑖 = 𝑘 → ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) − 1 ) = ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) |
| 226 |
221 225
|
ifbieq2d |
⊢ ( 𝑖 = 𝑘 → if ( 𝑖 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) = if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) |
| 227 |
220 226
|
ifbieq2d |
⊢ ( 𝑖 = 𝑘 → if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) = if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) |
| 228 |
|
nfcv |
⊢ Ⅎ 𝑘 if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) |
| 229 |
|
nfcv |
⊢ Ⅎ 𝑖 if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) |
| 230 |
227 228 229
|
cbvsum |
⊢ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) = Σ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) |
| 231 |
230
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) = Σ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) |
| 232 |
|
eqid |
⊢ 1 = 1 |
| 233 |
|
1p0e1 |
⊢ ( 1 + 0 ) = 1 |
| 234 |
232 233
|
eqtr4i |
⊢ 1 = ( 1 + 0 ) |
| 235 |
234
|
a1i |
⊢ ( 𝜑 → 1 = ( 1 + 0 ) ) |
| 236 |
|
0le1 |
⊢ 0 ≤ 1 |
| 237 |
236
|
a1i |
⊢ ( 𝜑 → 0 ≤ 1 ) |
| 238 |
137 8 64 137 62 237
|
le2addd |
⊢ ( 𝜑 → ( 1 + 0 ) ≤ ( 𝐾 + 1 ) ) |
| 239 |
235 238
|
eqbrtrd |
⊢ ( 𝜑 → 1 ≤ ( 𝐾 + 1 ) ) |
| 240 |
60
|
peano2zd |
⊢ ( 𝜑 → ( 𝐾 + 1 ) ∈ ℤ ) |
| 241 |
|
eluz |
⊢ ( ( 1 ∈ ℤ ∧ ( 𝐾 + 1 ) ∈ ℤ ) → ( ( 𝐾 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ↔ 1 ≤ ( 𝐾 + 1 ) ) ) |
| 242 |
57 240 241
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐾 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ↔ 1 ≤ ( 𝐾 + 1 ) ) ) |
| 243 |
239 242
|
mpbird |
⊢ ( 𝜑 → ( 𝐾 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 244 |
243
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝐾 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 245 |
199
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ∈ ℂ ) |
| 246 |
|
eqeq1 |
⊢ ( 𝑘 = ( 𝐾 + 1 ) → ( 𝑘 = ( 𝐾 + 1 ) ↔ ( 𝐾 + 1 ) = ( 𝐾 + 1 ) ) ) |
| 247 |
|
eqeq1 |
⊢ ( 𝑘 = ( 𝐾 + 1 ) → ( 𝑘 = 1 ↔ ( 𝐾 + 1 ) = 1 ) ) |
| 248 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝐾 + 1 ) → ( 𝑑 ‘ 𝑘 ) = ( 𝑑 ‘ ( 𝐾 + 1 ) ) ) |
| 249 |
|
fvoveq1 |
⊢ ( 𝑘 = ( 𝐾 + 1 ) → ( 𝑑 ‘ ( 𝑘 − 1 ) ) = ( 𝑑 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) |
| 250 |
248 249
|
oveq12d |
⊢ ( 𝑘 = ( 𝐾 + 1 ) → ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) = ( ( 𝑑 ‘ ( 𝐾 + 1 ) ) − ( 𝑑 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) ) |
| 251 |
250
|
oveq1d |
⊢ ( 𝑘 = ( 𝐾 + 1 ) → ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) = ( ( ( 𝑑 ‘ ( 𝐾 + 1 ) ) − ( 𝑑 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) − 1 ) ) |
| 252 |
247 251
|
ifbieq2d |
⊢ ( 𝑘 = ( 𝐾 + 1 ) → if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = if ( ( 𝐾 + 1 ) = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ ( 𝐾 + 1 ) ) − ( 𝑑 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) − 1 ) ) ) |
| 253 |
246 252
|
ifbieq2d |
⊢ ( 𝑘 = ( 𝐾 + 1 ) → if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = if ( ( 𝐾 + 1 ) = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( ( 𝐾 + 1 ) = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ ( 𝐾 + 1 ) ) − ( 𝑑 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) − 1 ) ) ) ) |
| 254 |
244 245 253
|
fsumm1 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = ( Σ 𝑘 ∈ ( 1 ... ( ( 𝐾 + 1 ) − 1 ) ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) + if ( ( 𝐾 + 1 ) = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( ( 𝐾 + 1 ) = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ ( 𝐾 + 1 ) ) − ( 𝑑 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) − 1 ) ) ) ) ) |
| 255 |
156
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝐾 ∈ ℂ ) |
| 256 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 1 ∈ ℂ ) |
| 257 |
255 256
|
pncand |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( ( 𝐾 + 1 ) − 1 ) = 𝐾 ) |
| 258 |
257
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 1 ... ( ( 𝐾 + 1 ) − 1 ) ) = ( 1 ... 𝐾 ) ) |
| 259 |
258
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... ( ( 𝐾 + 1 ) − 1 ) ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) |
| 260 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝐾 + 1 ) = ( 𝐾 + 1 ) ) |
| 261 |
260
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → if ( ( 𝐾 + 1 ) = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( ( 𝐾 + 1 ) = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ ( 𝐾 + 1 ) ) − ( 𝑑 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) − 1 ) ) ) = ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ) |
| 262 |
259 261
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( Σ 𝑘 ∈ ( 1 ... ( ( 𝐾 + 1 ) − 1 ) ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) + if ( ( 𝐾 + 1 ) = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( ( 𝐾 + 1 ) = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ ( 𝐾 + 1 ) ) − ( 𝑑 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) − 1 ) ) ) ) = ( Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) + ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ) ) |
| 263 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 1 ... 𝐾 ) → 𝑘 ∈ ℤ ) |
| 264 |
263
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 𝑘 ∈ ℤ ) |
| 265 |
264
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 𝑘 ∈ ℝ ) |
| 266 |
64
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 𝐾 ∈ ℝ ) |
| 267 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 1 ∈ ℝ ) |
| 268 |
266 267
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → ( 𝐾 + 1 ) ∈ ℝ ) |
| 269 |
|
elfzle2 |
⊢ ( 𝑘 ∈ ( 1 ... 𝐾 ) → 𝑘 ≤ 𝐾 ) |
| 270 |
269
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 𝑘 ≤ 𝐾 ) |
| 271 |
266
|
ltp1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 𝐾 < ( 𝐾 + 1 ) ) |
| 272 |
265 266 268 270 271
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 𝑘 < ( 𝐾 + 1 ) ) |
| 273 |
265 272
|
ltned |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 𝑘 ≠ ( 𝐾 + 1 ) ) |
| 274 |
273
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → ¬ 𝑘 = ( 𝐾 + 1 ) ) |
| 275 |
274
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) |
| 276 |
275
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) |
| 277 |
|
eqeq1 |
⊢ ( ( ( 𝑑 ‘ 1 ) − 1 ) = if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) → ( ( ( 𝑑 ‘ 1 ) − 1 ) = ( if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) − 1 ) ↔ if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = ( if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) − 1 ) ) ) |
| 278 |
|
eqeq1 |
⊢ ( ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) = if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) → ( ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) = ( if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) − 1 ) ↔ if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = ( if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) − 1 ) ) ) |
| 279 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑘 = 1 ) → 𝑘 = 1 ) |
| 280 |
279
|
iftrued |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑘 = 1 ) → if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( 𝑑 ‘ 1 ) ) |
| 281 |
280
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑘 = 1 ) → ( 𝑑 ‘ 1 ) = if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) ) |
| 282 |
281
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑘 = 1 ) → ( ( 𝑑 ‘ 1 ) − 1 ) = ( if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) − 1 ) ) |
| 283 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ¬ 𝑘 = 1 ) |
| 284 |
283
|
iffalsed |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) |
| 285 |
284
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) = if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) ) |
| 286 |
285
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) = ( if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) − 1 ) ) |
| 287 |
277 278 282 286
|
ifbothda |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = ( if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) − 1 ) ) |
| 288 |
287
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = Σ 𝑘 ∈ ( 1 ... 𝐾 ) ( if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) − 1 ) ) |
| 289 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 1 ... 𝐾 ) ∈ Fin ) |
| 290 |
|
eleq1 |
⊢ ( ( 𝑑 ‘ 1 ) = if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( 𝑑 ‘ 1 ) ∈ ℤ ↔ if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) ∈ ℤ ) ) |
| 291 |
|
eleq1 |
⊢ ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) = if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ∈ ℤ ↔ if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) ∈ ℤ ) ) |
| 292 |
56
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 293 |
88
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 1 ∈ ( 1 ... 𝐾 ) ) |
| 294 |
292 293
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → ( 𝑑 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 295 |
90
|
nnzd |
⊢ ( ( 𝑑 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ 1 ) ∈ ℤ ) |
| 296 |
294 295
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → ( 𝑑 ‘ 1 ) ∈ ℤ ) |
| 297 |
296
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑘 = 1 ) → ( 𝑑 ‘ 1 ) ∈ ℤ ) |
| 298 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 𝑘 ∈ ( 1 ... 𝐾 ) ) |
| 299 |
292 298
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → ( 𝑑 ‘ 𝑘 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 300 |
299 126
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → ( 𝑑 ‘ 𝑘 ) ∈ ℤ ) |
| 301 |
300
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑑 ‘ 𝑘 ) ∈ ℤ ) |
| 302 |
292
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 303 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ∈ ℤ ) |
| 304 |
61
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 𝐾 ∈ ℤ ) |
| 305 |
304
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → 𝐾 ∈ ℤ ) |
| 306 |
264
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 𝑘 ∈ ℤ ) |
| 307 |
306
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ℤ ) |
| 308 |
307 303
|
zsubcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ∈ ℤ ) |
| 309 |
|
elfzle1 |
⊢ ( 𝑘 ∈ ( 1 ... 𝐾 ) → 1 ≤ 𝑘 ) |
| 310 |
298 309
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 1 ≤ 𝑘 ) |
| 311 |
310
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ≤ 𝑘 ) |
| 312 |
135
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ≠ 1 ) |
| 313 |
311 312
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ( 1 ≤ 𝑘 ∧ 𝑘 ≠ 1 ) ) |
| 314 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ∈ ℝ ) |
| 315 |
307
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ℝ ) |
| 316 |
314 315
|
ltlend |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ( 1 < 𝑘 ↔ ( 1 ≤ 𝑘 ∧ 𝑘 ≠ 1 ) ) ) |
| 317 |
313 316
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → 1 < 𝑘 ) |
| 318 |
303 307
|
zltlem1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ( 1 < 𝑘 ↔ 1 ≤ ( 𝑘 − 1 ) ) ) |
| 319 |
317 318
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ≤ ( 𝑘 − 1 ) ) |
| 320 |
308
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ∈ ℝ ) |
| 321 |
305
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → 𝐾 ∈ ℝ ) |
| 322 |
315
|
lem1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ≤ 𝑘 ) |
| 323 |
298 269
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 𝑘 ≤ 𝐾 ) |
| 324 |
323
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ≤ 𝐾 ) |
| 325 |
320 315 321 322 324
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ≤ 𝐾 ) |
| 326 |
303 305 308 319 325
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ∈ ( 1 ... 𝐾 ) ) |
| 327 |
302 326
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑑 ‘ ( 𝑘 − 1 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 328 |
327 166
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑑 ‘ ( 𝑘 − 1 ) ) ∈ ℕ ) |
| 329 |
328
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑑 ‘ ( 𝑘 − 1 ) ) ∈ ℤ ) |
| 330 |
301 329
|
zsubcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ∈ ℤ ) |
| 331 |
290 291 297 330
|
ifbothda |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) ∈ ℤ ) |
| 332 |
331
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) ∈ ℤ ) |
| 333 |
332
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) ∈ ℂ ) |
| 334 |
256
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 1 ∈ ℂ ) |
| 335 |
289 333 334
|
fsumsub |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) ( if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) − 1 ) = ( Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) − Σ 𝑘 ∈ ( 1 ... 𝐾 ) 1 ) ) |
| 336 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 1 = 𝐾 ) → 1 = 𝐾 ) |
| 337 |
336
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 1 = 𝐾 ) → ( 1 ... 1 ) = ( 1 ... 𝐾 ) ) |
| 338 |
337
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 1 = 𝐾 ) → ( 1 ... 𝐾 ) = ( 1 ... 1 ) ) |
| 339 |
338
|
sumeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 1 = 𝐾 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = Σ 𝑘 ∈ ( 1 ... 1 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) ) |
| 340 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 1 ∈ ℤ ) |
| 341 |
232
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 1 = 1 ) |
| 342 |
341
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → if ( 1 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 1 ) − ( 𝑑 ‘ ( 1 − 1 ) ) ) ) = ( 𝑑 ‘ 1 ) ) |
| 343 |
91
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑑 ‘ 1 ) ∈ ℂ ) |
| 344 |
342 343
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → if ( 1 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 1 ) − ( 𝑑 ‘ ( 1 − 1 ) ) ) ) ∈ ℂ ) |
| 345 |
|
eqeq1 |
⊢ ( 𝑘 = 1 → ( 𝑘 = 1 ↔ 1 = 1 ) ) |
| 346 |
|
fveq2 |
⊢ ( 𝑘 = 1 → ( 𝑑 ‘ 𝑘 ) = ( 𝑑 ‘ 1 ) ) |
| 347 |
|
fvoveq1 |
⊢ ( 𝑘 = 1 → ( 𝑑 ‘ ( 𝑘 − 1 ) ) = ( 𝑑 ‘ ( 1 − 1 ) ) ) |
| 348 |
346 347
|
oveq12d |
⊢ ( 𝑘 = 1 → ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) = ( ( 𝑑 ‘ 1 ) − ( 𝑑 ‘ ( 1 − 1 ) ) ) ) |
| 349 |
345 348
|
ifbieq2d |
⊢ ( 𝑘 = 1 → if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = if ( 1 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 1 ) − ( 𝑑 ‘ ( 1 − 1 ) ) ) ) ) |
| 350 |
349
|
fsum1 |
⊢ ( ( 1 ∈ ℤ ∧ if ( 1 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 1 ) − ( 𝑑 ‘ ( 1 − 1 ) ) ) ) ∈ ℂ ) → Σ 𝑘 ∈ ( 1 ... 1 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = if ( 1 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 1 ) − ( 𝑑 ‘ ( 1 − 1 ) ) ) ) ) |
| 351 |
340 344 350
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 1 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = if ( 1 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 1 ) − ( 𝑑 ‘ ( 1 − 1 ) ) ) ) ) |
| 352 |
351 342
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 1 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( 𝑑 ‘ 1 ) ) |
| 353 |
352
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 1 = 𝐾 ) → Σ 𝑘 ∈ ( 1 ... 1 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( 𝑑 ‘ 1 ) ) |
| 354 |
|
fveq2 |
⊢ ( 1 = 𝐾 → ( 𝑑 ‘ 1 ) = ( 𝑑 ‘ 𝐾 ) ) |
| 355 |
354
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 1 = 𝐾 ) → ( 𝑑 ‘ 1 ) = ( 𝑑 ‘ 𝐾 ) ) |
| 356 |
339 353 355
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 1 = 𝐾 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( 𝑑 ‘ 𝐾 ) ) |
| 357 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → 𝐾 ∈ ℕ ) |
| 358 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 359 |
358
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ℕ = ( ℤ≥ ‘ 1 ) ) |
| 360 |
357 359
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → 𝐾 ∈ ( ℤ≥ ‘ 1 ) ) |
| 361 |
333
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) ∈ ℂ ) |
| 362 |
|
iftrue |
⊢ ( 𝑘 = 1 → if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( 𝑑 ‘ 1 ) ) |
| 363 |
360 361 362
|
fsum1p |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( ( 𝑑 ‘ 1 ) + Σ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) ) ) |
| 364 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) ) → 1 ∈ ℝ ) |
| 365 |
|
elfzle1 |
⊢ ( 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) → ( 1 + 1 ) ≤ 𝑘 ) |
| 366 |
365
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) ) → ( 1 + 1 ) ≤ 𝑘 ) |
| 367 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) ) → 1 ∈ ℤ ) |
| 368 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) → 𝑘 ∈ ℤ ) |
| 369 |
368
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) ) → 𝑘 ∈ ℤ ) |
| 370 |
367 369
|
zltp1led |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) ) → ( 1 < 𝑘 ↔ ( 1 + 1 ) ≤ 𝑘 ) ) |
| 371 |
366 370
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) ) → 1 < 𝑘 ) |
| 372 |
364 371
|
ltned |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) ) → 1 ≠ 𝑘 ) |
| 373 |
372
|
necomd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) ) → 𝑘 ≠ 1 ) |
| 374 |
373
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) ) → ¬ 𝑘 = 1 ) |
| 375 |
374
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) ) → if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) |
| 376 |
375
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → Σ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = Σ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) |
| 377 |
376
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝑑 ‘ 1 ) + Σ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) ) = ( ( 𝑑 ‘ 1 ) + Σ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) ) |
| 378 |
255
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → 𝐾 ∈ ℂ ) |
| 379 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → 1 ∈ ℂ ) |
| 380 |
378 379
|
npcand |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝐾 − 1 ) + 1 ) = 𝐾 ) |
| 381 |
380
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → 𝐾 = ( ( 𝐾 − 1 ) + 1 ) ) |
| 382 |
381
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 1 + 1 ) ... 𝐾 ) = ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ) |
| 383 |
382
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → Σ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) = Σ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) |
| 384 |
383
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝑑 ‘ 1 ) + Σ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( ( 𝑑 ‘ 1 ) + Σ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) ) |
| 385 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) → 𝑘 ∈ ℤ ) |
| 386 |
385
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ) → 𝑘 ∈ ℤ ) |
| 387 |
386
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ) → 𝑘 ∈ ℂ ) |
| 388 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ) → 1 ∈ ℂ ) |
| 389 |
387 388
|
npcand |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ) → ( ( 𝑘 − 1 ) + 1 ) = 𝑘 ) |
| 390 |
389
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ) → 𝑘 = ( ( 𝑘 − 1 ) + 1 ) ) |
| 391 |
390
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ) → ( 𝑑 ‘ 𝑘 ) = ( 𝑑 ‘ ( ( 𝑘 − 1 ) + 1 ) ) ) |
| 392 |
391
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ) → ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) = ( ( 𝑑 ‘ ( ( 𝑘 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) |
| 393 |
392
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → Σ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) = Σ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ( ( 𝑑 ‘ ( ( 𝑘 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) |
| 394 |
393
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝑑 ‘ 1 ) + Σ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( ( 𝑑 ‘ 1 ) + Σ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ( ( 𝑑 ‘ ( ( 𝑘 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) ) |
| 395 |
58
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → 1 ∈ ℤ ) |
| 396 |
61
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → 𝐾 ∈ ℤ ) |
| 397 |
396 395
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( 𝐾 − 1 ) ∈ ℤ ) |
| 398 |
56
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 399 |
398
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 400 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 1 ∈ ℤ ) |
| 401 |
396
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 𝐾 ∈ ℤ ) |
| 402 |
|
elfznn |
⊢ ( 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) → 𝑠 ∈ ℕ ) |
| 403 |
402
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 𝑠 ∈ ℕ ) |
| 404 |
403
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 𝑠 ∈ ℤ ) |
| 405 |
404
|
peano2zd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝑠 + 1 ) ∈ ℤ ) |
| 406 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 1 ∈ ℝ ) |
| 407 |
403
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 𝑠 ∈ ℝ ) |
| 408 |
405
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝑠 + 1 ) ∈ ℝ ) |
| 409 |
403
|
nnge1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 1 ≤ 𝑠 ) |
| 410 |
407
|
lep1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 𝑠 ≤ ( 𝑠 + 1 ) ) |
| 411 |
406 407 408 409 410
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 1 ≤ ( 𝑠 + 1 ) ) |
| 412 |
|
elfzle2 |
⊢ ( 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) → 𝑠 ≤ ( 𝐾 − 1 ) ) |
| 413 |
412
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 𝑠 ≤ ( 𝐾 − 1 ) ) |
| 414 |
401
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 𝐾 ∈ ℝ ) |
| 415 |
|
leaddsub |
⊢ ( ( 𝑠 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐾 ∈ ℝ ) → ( ( 𝑠 + 1 ) ≤ 𝐾 ↔ 𝑠 ≤ ( 𝐾 − 1 ) ) ) |
| 416 |
407 406 414 415
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( ( 𝑠 + 1 ) ≤ 𝐾 ↔ 𝑠 ≤ ( 𝐾 − 1 ) ) ) |
| 417 |
413 416
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝑠 + 1 ) ≤ 𝐾 ) |
| 418 |
400 401 405 411 417
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝑠 + 1 ) ∈ ( 1 ... 𝐾 ) ) |
| 419 |
399 418
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝑑 ‘ ( 𝑠 + 1 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 420 |
|
elfznn |
⊢ ( ( 𝑑 ‘ ( 𝑠 + 1 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ ( 𝑠 + 1 ) ) ∈ ℕ ) |
| 421 |
419 420
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝑑 ‘ ( 𝑠 + 1 ) ) ∈ ℕ ) |
| 422 |
421
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝑑 ‘ ( 𝑠 + 1 ) ) ∈ ℤ ) |
| 423 |
414 406
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝐾 − 1 ) ∈ ℝ ) |
| 424 |
414
|
lem1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝐾 − 1 ) ≤ 𝐾 ) |
| 425 |
407 423 414 413 424
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 𝑠 ≤ 𝐾 ) |
| 426 |
400 401 404 409 425
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 𝑠 ∈ ( 1 ... 𝐾 ) ) |
| 427 |
399
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) ∧ 𝑠 ∈ ( 1 ... 𝐾 ) ) → ( 𝑑 ‘ 𝑠 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 428 |
426 427
|
mpdan |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝑑 ‘ 𝑠 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 429 |
|
elfznn |
⊢ ( ( 𝑑 ‘ 𝑠 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ 𝑠 ) ∈ ℕ ) |
| 430 |
428 429
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝑑 ‘ 𝑠 ) ∈ ℕ ) |
| 431 |
430
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝑑 ‘ 𝑠 ) ∈ ℤ ) |
| 432 |
422 431
|
zsubcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( ( 𝑑 ‘ ( 𝑠 + 1 ) ) − ( 𝑑 ‘ 𝑠 ) ) ∈ ℤ ) |
| 433 |
432
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( ( 𝑑 ‘ ( 𝑠 + 1 ) ) − ( 𝑑 ‘ 𝑠 ) ) ∈ ℂ ) |
| 434 |
|
fvoveq1 |
⊢ ( 𝑠 = ( 𝑘 − 1 ) → ( 𝑑 ‘ ( 𝑠 + 1 ) ) = ( 𝑑 ‘ ( ( 𝑘 − 1 ) + 1 ) ) ) |
| 435 |
|
fveq2 |
⊢ ( 𝑠 = ( 𝑘 − 1 ) → ( 𝑑 ‘ 𝑠 ) = ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) |
| 436 |
434 435
|
oveq12d |
⊢ ( 𝑠 = ( 𝑘 − 1 ) → ( ( 𝑑 ‘ ( 𝑠 + 1 ) ) − ( 𝑑 ‘ 𝑠 ) ) = ( ( 𝑑 ‘ ( ( 𝑘 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) |
| 437 |
395 395 397 433 436
|
fsumshft |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → Σ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ( ( 𝑑 ‘ ( 𝑠 + 1 ) ) − ( 𝑑 ‘ 𝑠 ) ) = Σ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ( ( 𝑑 ‘ ( ( 𝑘 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) |
| 438 |
437
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → Σ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ( ( 𝑑 ‘ ( ( 𝑘 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) = Σ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ( ( 𝑑 ‘ ( 𝑠 + 1 ) ) − ( 𝑑 ‘ 𝑠 ) ) ) |
| 439 |
438
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝑑 ‘ 1 ) + Σ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ( ( 𝑑 ‘ ( ( 𝑘 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( ( 𝑑 ‘ 1 ) + Σ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ( ( 𝑑 ‘ ( 𝑠 + 1 ) ) − ( 𝑑 ‘ 𝑠 ) ) ) ) |
| 440 |
|
fveq2 |
⊢ ( 𝑜 = 𝑠 → ( 𝑑 ‘ 𝑜 ) = ( 𝑑 ‘ 𝑠 ) ) |
| 441 |
|
fveq2 |
⊢ ( 𝑜 = ( 𝑠 + 1 ) → ( 𝑑 ‘ 𝑜 ) = ( 𝑑 ‘ ( 𝑠 + 1 ) ) ) |
| 442 |
|
fveq2 |
⊢ ( 𝑜 = 1 → ( 𝑑 ‘ 𝑜 ) = ( 𝑑 ‘ 1 ) ) |
| 443 |
|
fveq2 |
⊢ ( 𝑜 = ( ( 𝐾 − 1 ) + 1 ) → ( 𝑑 ‘ 𝑜 ) = ( 𝑑 ‘ ( ( 𝐾 − 1 ) + 1 ) ) ) |
| 444 |
380 360
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝐾 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 445 |
56
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 1 < 𝐾 ) → 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 446 |
445
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 447 |
446
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑜 ∈ ( 1 ... 𝐾 ) ) → ( 𝑑 ‘ 𝑜 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 448 |
447
|
ex |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( 𝑜 ∈ ( 1 ... 𝐾 ) → ( 𝑑 ‘ 𝑜 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) ) |
| 449 |
380
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) = ( 1 ... 𝐾 ) ) |
| 450 |
449
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( 𝑜 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ↔ 𝑜 ∈ ( 1 ... 𝐾 ) ) ) |
| 451 |
450
|
imbi1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝑜 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) → ( 𝑑 ‘ 𝑜 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) ↔ ( 𝑜 ∈ ( 1 ... 𝐾 ) → ( 𝑑 ‘ 𝑜 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) ) ) |
| 452 |
448 451
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( 𝑜 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) → ( 𝑑 ‘ 𝑜 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) ) |
| 453 |
452
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑜 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ) → ( 𝑑 ‘ 𝑜 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 454 |
|
elfznn |
⊢ ( ( 𝑑 ‘ 𝑜 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ 𝑜 ) ∈ ℕ ) |
| 455 |
453 454
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑜 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ) → ( 𝑑 ‘ 𝑜 ) ∈ ℕ ) |
| 456 |
455
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) ∧ 𝑜 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ) → ( 𝑑 ‘ 𝑜 ) ∈ ℂ ) |
| 457 |
440 441 442 443 397 444 456
|
telfsum2 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → Σ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ( ( 𝑑 ‘ ( 𝑠 + 1 ) ) − ( 𝑑 ‘ 𝑠 ) ) = ( ( 𝑑 ‘ ( ( 𝐾 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) |
| 458 |
457
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝑑 ‘ 1 ) + Σ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ( ( 𝑑 ‘ ( 𝑠 + 1 ) ) − ( 𝑑 ‘ 𝑠 ) ) ) = ( ( 𝑑 ‘ 1 ) + ( ( 𝑑 ‘ ( ( 𝐾 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) ) |
| 459 |
380
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( 𝑑 ‘ ( ( 𝐾 − 1 ) + 1 ) ) = ( 𝑑 ‘ 𝐾 ) ) |
| 460 |
459
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝑑 ‘ ( ( 𝐾 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) = ( ( 𝑑 ‘ 𝐾 ) − ( 𝑑 ‘ 1 ) ) ) |
| 461 |
460
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝑑 ‘ 1 ) + ( ( 𝑑 ‘ ( ( 𝐾 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) = ( ( 𝑑 ‘ 1 ) + ( ( 𝑑 ‘ 𝐾 ) − ( 𝑑 ‘ 1 ) ) ) ) |
| 462 |
343
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( 𝑑 ‘ 1 ) ∈ ℂ ) |
| 463 |
68 73
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑑 ‘ 𝐾 ) ∈ ℕ ) |
| 464 |
463
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑑 ‘ 𝐾 ) ∈ ℂ ) |
| 465 |
464
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( 𝑑 ‘ 𝐾 ) ∈ ℂ ) |
| 466 |
462 465
|
pncan3d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝑑 ‘ 1 ) + ( ( 𝑑 ‘ 𝐾 ) − ( 𝑑 ‘ 1 ) ) ) = ( 𝑑 ‘ 𝐾 ) ) |
| 467 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( 𝑑 ‘ 𝐾 ) = ( 𝑑 ‘ 𝐾 ) ) |
| 468 |
466 467
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝑑 ‘ 1 ) + ( ( 𝑑 ‘ 𝐾 ) − ( 𝑑 ‘ 1 ) ) ) = ( 𝑑 ‘ 𝐾 ) ) |
| 469 |
461 468
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝑑 ‘ 1 ) + ( ( 𝑑 ‘ ( ( 𝐾 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) = ( 𝑑 ‘ 𝐾 ) ) |
| 470 |
458 469
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝑑 ‘ 1 ) + Σ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ( ( 𝑑 ‘ ( 𝑠 + 1 ) ) − ( 𝑑 ‘ 𝑠 ) ) ) = ( 𝑑 ‘ 𝐾 ) ) |
| 471 |
439 470
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝑑 ‘ 1 ) + Σ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ( ( 𝑑 ‘ ( ( 𝑘 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( 𝑑 ‘ 𝐾 ) ) |
| 472 |
394 471
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝑑 ‘ 1 ) + Σ 𝑘 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( 𝑑 ‘ 𝐾 ) ) |
| 473 |
384 472
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝑑 ‘ 1 ) + Σ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( 𝑑 ‘ 𝐾 ) ) |
| 474 |
377 473
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → ( ( 𝑑 ‘ 1 ) + Σ 𝑘 ∈ ( ( 1 + 1 ) ... 𝐾 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) ) = ( 𝑑 ‘ 𝐾 ) ) |
| 475 |
363 474
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 1 < 𝐾 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( 𝑑 ‘ 𝐾 ) ) |
| 476 |
475
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 1 < 𝐾 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( 𝑑 ‘ 𝐾 ) ) |
| 477 |
137
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 1 ∈ ℝ ) |
| 478 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝐾 ∈ ℝ ) |
| 479 |
477 478
|
leloed |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 1 ≤ 𝐾 ↔ ( 1 < 𝐾 ∨ 1 = 𝐾 ) ) ) |
| 480 |
63 479
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 1 < 𝐾 ∨ 1 = 𝐾 ) ) |
| 481 |
480
|
orcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 1 = 𝐾 ∨ 1 < 𝐾 ) ) |
| 482 |
356 476 481
|
mpjaodan |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) = ( 𝑑 ‘ 𝐾 ) ) |
| 483 |
|
fsumconst |
⊢ ( ( ( 1 ... 𝐾 ) ∈ Fin ∧ 1 ∈ ℂ ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) 1 = ( ( ♯ ‘ ( 1 ... 𝐾 ) ) · 1 ) ) |
| 484 |
289 256 483
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) 1 = ( ( ♯ ‘ ( 1 ... 𝐾 ) ) · 1 ) ) |
| 485 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝐾 ∈ ℕ0 ) |
| 486 |
|
hashfz1 |
⊢ ( 𝐾 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝐾 ) ) = 𝐾 ) |
| 487 |
485 486
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( ♯ ‘ ( 1 ... 𝐾 ) ) = 𝐾 ) |
| 488 |
487
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( ( ♯ ‘ ( 1 ... 𝐾 ) ) · 1 ) = ( 𝐾 · 1 ) ) |
| 489 |
255
|
mulridd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝐾 · 1 ) = 𝐾 ) |
| 490 |
488 489
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( ( ♯ ‘ ( 1 ... 𝐾 ) ) · 1 ) = 𝐾 ) |
| 491 |
484 490
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) 1 = 𝐾 ) |
| 492 |
482 491
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) − Σ 𝑘 ∈ ( 1 ... 𝐾 ) 1 ) = ( ( 𝑑 ‘ 𝐾 ) − 𝐾 ) ) |
| 493 |
335 492
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) ( if ( 𝑘 = 1 , ( 𝑑 ‘ 1 ) , ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) ) − 1 ) = ( ( 𝑑 ‘ 𝐾 ) − 𝐾 ) ) |
| 494 |
288 493
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = ( ( 𝑑 ‘ 𝐾 ) − 𝐾 ) ) |
| 495 |
464 255
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( ( 𝑑 ‘ 𝐾 ) − 𝐾 ) ∈ ℂ ) |
| 496 |
495
|
addridd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( ( ( 𝑑 ‘ 𝐾 ) − 𝐾 ) + 0 ) = ( ( 𝑑 ‘ 𝐾 ) − 𝐾 ) ) |
| 497 |
496
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( ( 𝑑 ‘ 𝐾 ) − 𝐾 ) = ( ( ( 𝑑 ‘ 𝐾 ) − 𝐾 ) + 0 ) ) |
| 498 |
|
0cnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 0 ∈ ℂ ) |
| 499 |
495 498
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( ( ( 𝑑 ‘ 𝐾 ) − 𝐾 ) + 0 ) = ( 0 + ( ( 𝑑 ‘ 𝐾 ) − 𝐾 ) ) ) |
| 500 |
497 499
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( ( 𝑑 ‘ 𝐾 ) − 𝐾 ) = ( 0 + ( ( 𝑑 ‘ 𝐾 ) − 𝐾 ) ) ) |
| 501 |
494 500
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = ( 0 + ( ( 𝑑 ‘ 𝐾 ) − 𝐾 ) ) ) |
| 502 |
498 255 464
|
subsub2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 0 − ( 𝐾 − ( 𝑑 ‘ 𝐾 ) ) ) = ( 0 + ( ( 𝑑 ‘ 𝐾 ) − 𝐾 ) ) ) |
| 503 |
502
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 0 + ( ( 𝑑 ‘ 𝐾 ) − 𝐾 ) ) = ( 0 − ( 𝐾 − ( 𝑑 ‘ 𝐾 ) ) ) ) |
| 504 |
501 503
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = ( 0 − ( 𝐾 − ( 𝑑 ‘ 𝐾 ) ) ) ) |
| 505 |
1
|
nn0cnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 506 |
505
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝑁 ∈ ℂ ) |
| 507 |
506
|
subidd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑁 − 𝑁 ) = 0 ) |
| 508 |
507
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 0 = ( 𝑁 − 𝑁 ) ) |
| 509 |
508
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 0 − ( 𝐾 − ( 𝑑 ‘ 𝐾 ) ) ) = ( ( 𝑁 − 𝑁 ) − ( 𝐾 − ( 𝑑 ‘ 𝐾 ) ) ) ) |
| 510 |
504 509
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = ( ( 𝑁 − 𝑁 ) − ( 𝐾 − ( 𝑑 ‘ 𝐾 ) ) ) ) |
| 511 |
255 464
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝐾 − ( 𝑑 ‘ 𝐾 ) ) ∈ ℂ ) |
| 512 |
506 506 511
|
subsub4d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( ( 𝑁 − 𝑁 ) − ( 𝐾 − ( 𝑑 ‘ 𝐾 ) ) ) = ( 𝑁 − ( 𝑁 + ( 𝐾 − ( 𝑑 ‘ 𝐾 ) ) ) ) ) |
| 513 |
510 512
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = ( 𝑁 − ( 𝑁 + ( 𝐾 − ( 𝑑 ‘ 𝐾 ) ) ) ) ) |
| 514 |
506 255 464
|
addsubassd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) = ( 𝑁 + ( 𝐾 − ( 𝑑 ‘ 𝐾 ) ) ) ) |
| 515 |
514
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑁 + ( 𝐾 − ( 𝑑 ‘ 𝐾 ) ) ) = ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ) |
| 516 |
515
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑁 − ( 𝑁 + ( 𝐾 − ( 𝑑 ‘ 𝐾 ) ) ) ) = ( 𝑁 − ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ) ) |
| 517 |
513 516
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = ( 𝑁 − ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ) ) |
| 518 |
276 517
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = ( 𝑁 − ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ) ) |
| 519 |
|
eleq1 |
⊢ ( ( ( 𝑑 ‘ 1 ) − 1 ) = if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) → ( ( ( 𝑑 ‘ 1 ) − 1 ) ∈ ℤ ↔ if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ∈ ℤ ) ) |
| 520 |
|
eleq1 |
⊢ ( ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) = if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) → ( ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ∈ ℤ ↔ if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ∈ ℤ ) ) |
| 521 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → 1 ∈ ℤ ) |
| 522 |
296 521
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑑 ‘ 1 ) − 1 ) ∈ ℤ ) |
| 523 |
522
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑘 = 1 ) → ( ( 𝑑 ‘ 1 ) − 1 ) ∈ ℤ ) |
| 524 |
521
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ∈ ℤ ) |
| 525 |
330 524
|
zsubcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ∈ ℤ ) |
| 526 |
519 520 523 525
|
ifbothda |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ∈ ℤ ) |
| 527 |
526
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ∈ ℤ ) |
| 528 |
275
|
eleq1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → ( if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ∈ ℤ ↔ if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ∈ ℤ ) ) |
| 529 |
527 528
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) → if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ∈ ℤ ) |
| 530 |
289 529
|
fsumzcl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ∈ ℤ ) |
| 531 |
530
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ∈ ℂ ) |
| 532 |
506 255
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑁 + 𝐾 ) ∈ ℂ ) |
| 533 |
532 464
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ∈ ℂ ) |
| 534 |
531 533 506
|
addlsub |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( ( Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) + ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ) = 𝑁 ↔ Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = ( 𝑁 − ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ) ) ) |
| 535 |
518 534
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) + ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ) = 𝑁 ) |
| 536 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝑁 = 𝑁 ) |
| 537 |
535 536
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( Σ 𝑘 ∈ ( 1 ... 𝐾 ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) + ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ) = 𝑁 ) |
| 538 |
262 537
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( Σ 𝑘 ∈ ( 1 ... ( ( 𝐾 + 1 ) − 1 ) ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) + if ( ( 𝐾 + 1 ) = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( ( 𝐾 + 1 ) = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ ( 𝐾 + 1 ) ) − ( 𝑑 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) − 1 ) ) ) ) = 𝑁 ) |
| 539 |
254 538
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = 𝑁 ) |
| 540 |
231 539
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑑 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) = 𝑁 ) |
| 541 |
219 540
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑖 ) = 𝑁 ) |
| 542 |
201 541
|
jca |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑖 ) = 𝑁 ) ) |
| 543 |
|
ovex |
⊢ ( 1 ... ( 𝐾 + 1 ) ) ∈ V |
| 544 |
543
|
mptex |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ∈ V |
| 545 |
|
feq1 |
⊢ ( 𝑔 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) → ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ↔ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) ) |
| 546 |
|
simpl |
⊢ ( ( 𝑔 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑔 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) |
| 547 |
546
|
fveq1d |
⊢ ( ( 𝑔 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑔 ‘ 𝑖 ) = ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑖 ) ) |
| 548 |
547
|
sumeq2dv |
⊢ ( 𝑔 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑖 ) ) |
| 549 |
548
|
eqeq1d |
⊢ ( 𝑔 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) → ( Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ↔ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑖 ) = 𝑁 ) ) |
| 550 |
545 549
|
anbi12d |
⊢ ( 𝑔 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) → ( ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) ↔ ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑖 ) = 𝑁 ) ) ) |
| 551 |
544 550
|
elab |
⊢ ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ↔ ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑖 ) = 𝑁 ) ) |
| 552 |
551
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ↔ ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑖 ) = 𝑁 ) ) ) |
| 553 |
542 552
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ) |
| 554 |
5
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝐴 = { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ) |
| 555 |
554
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } = 𝐴 ) |
| 556 |
553 555
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ∈ 𝐴 ) |
| 557 |
289
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑙 ) ) ) ∈ V ) |
| 558 |
34 40 556 557
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑙 ) ) ) ) |
| 559 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) |
| 560 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ 𝑘 = 𝑙 ) → 𝑘 = 𝑙 ) |
| 561 |
560
|
eqeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ 𝑘 = 𝑙 ) → ( 𝑘 = ( 𝐾 + 1 ) ↔ 𝑙 = ( 𝐾 + 1 ) ) ) |
| 562 |
560
|
eqeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ 𝑘 = 𝑙 ) → ( 𝑘 = 1 ↔ 𝑙 = 1 ) ) |
| 563 |
560
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ 𝑘 = 𝑙 ) → ( 𝑑 ‘ 𝑘 ) = ( 𝑑 ‘ 𝑙 ) ) |
| 564 |
560
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ 𝑘 = 𝑙 ) → ( 𝑘 − 1 ) = ( 𝑙 − 1 ) ) |
| 565 |
564
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ 𝑘 = 𝑙 ) → ( 𝑑 ‘ ( 𝑘 − 1 ) ) = ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) |
| 566 |
563 565
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ 𝑘 = 𝑙 ) → ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) = ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) |
| 567 |
566
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ 𝑘 = 𝑙 ) → ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) = ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) |
| 568 |
562 567
|
ifbieq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ 𝑘 = 𝑙 ) → if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) |
| 569 |
561 568
|
ifbieq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ 𝑘 = 𝑙 ) → if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = if ( 𝑙 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) ) |
| 570 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 1 ∈ ℤ ) |
| 571 |
60
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝐾 ∈ ℤ ) |
| 572 |
571
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝐾 ∈ ℤ ) |
| 573 |
572
|
peano2zd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → ( 𝐾 + 1 ) ∈ ℤ ) |
| 574 |
|
elfzelz |
⊢ ( 𝑙 ∈ ( 1 ... 𝑗 ) → 𝑙 ∈ ℤ ) |
| 575 |
574
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑙 ∈ ℤ ) |
| 576 |
|
elfzle1 |
⊢ ( 𝑙 ∈ ( 1 ... 𝑗 ) → 1 ≤ 𝑙 ) |
| 577 |
576
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 1 ≤ 𝑙 ) |
| 578 |
575
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑙 ∈ ℝ ) |
| 579 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝑗 ∈ ( 1 ... 𝐾 ) ) |
| 580 |
|
elfznn |
⊢ ( 𝑗 ∈ ( 1 ... 𝐾 ) → 𝑗 ∈ ℕ ) |
| 581 |
579 580
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝑗 ∈ ℕ ) |
| 582 |
581
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝑗 ∈ ℝ ) |
| 583 |
582
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑗 ∈ ℝ ) |
| 584 |
573
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → ( 𝐾 + 1 ) ∈ ℝ ) |
| 585 |
|
elfzle2 |
⊢ ( 𝑙 ∈ ( 1 ... 𝑗 ) → 𝑙 ≤ 𝑗 ) |
| 586 |
585
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑙 ≤ 𝑗 ) |
| 587 |
64
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝐾 ∈ ℝ ) |
| 588 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 1 ∈ ℝ ) |
| 589 |
587 588
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝐾 + 1 ) ∈ ℝ ) |
| 590 |
|
elfzle2 |
⊢ ( 𝑗 ∈ ( 1 ... 𝐾 ) → 𝑗 ≤ 𝐾 ) |
| 591 |
579 590
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝑗 ≤ 𝐾 ) |
| 592 |
587
|
lep1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝐾 ≤ ( 𝐾 + 1 ) ) |
| 593 |
582 587 589 591 592
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝑗 ≤ ( 𝐾 + 1 ) ) |
| 594 |
593
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑗 ≤ ( 𝐾 + 1 ) ) |
| 595 |
578 583 584 586 594
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑙 ≤ ( 𝐾 + 1 ) ) |
| 596 |
570 573 575 577 595
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
| 597 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) ∈ V ) |
| 598 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → ( ( 𝑑 ‘ 1 ) − 1 ) ∈ V ) |
| 599 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ∈ V ) |
| 600 |
598 599
|
ifcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ∈ V ) |
| 601 |
597 600
|
ifcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → if ( 𝑙 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) ∈ V ) |
| 602 |
559 569 596 601
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑙 ) = if ( 𝑙 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) ) |
| 603 |
602
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑙 ) = Σ 𝑙 ∈ ( 1 ... 𝑗 ) if ( 𝑙 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) ) |
| 604 |
603
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑙 ) ) = ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) if ( 𝑙 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) ) ) |
| 605 |
|
elfznn |
⊢ ( 𝑙 ∈ ( 1 ... 𝑗 ) → 𝑙 ∈ ℕ ) |
| 606 |
605
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑙 ∈ ℕ ) |
| 607 |
606
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑙 ∈ ℝ ) |
| 608 |
587
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝐾 ∈ ℝ ) |
| 609 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 1 ∈ ℝ ) |
| 610 |
608 609
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → ( 𝐾 + 1 ) ∈ ℝ ) |
| 611 |
581
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑗 ∈ ℕ ) |
| 612 |
611
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑗 ∈ ℝ ) |
| 613 |
591
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑗 ≤ 𝐾 ) |
| 614 |
607 612 608 586 613
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑙 ≤ 𝐾 ) |
| 615 |
608
|
ltp1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝐾 < ( 𝐾 + 1 ) ) |
| 616 |
607 608 610 614 615
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑙 < ( 𝐾 + 1 ) ) |
| 617 |
607 616
|
ltned |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑙 ≠ ( 𝐾 + 1 ) ) |
| 618 |
617
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → ¬ 𝑙 = ( 𝐾 + 1 ) ) |
| 619 |
618
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → if ( 𝑙 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) = if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) |
| 620 |
619
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( 1 ... 𝑗 ) if ( 𝑙 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) = Σ 𝑙 ∈ ( 1 ... 𝑗 ) if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) |
| 621 |
620
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) if ( 𝑙 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) ) = ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) ) |
| 622 |
581
|
nnge1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 1 ≤ 𝑗 ) |
| 623 |
57
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 1 ∈ ℤ ) |
| 624 |
581
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝑗 ∈ ℤ ) |
| 625 |
|
eluz |
⊢ ( ( 1 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 𝑗 ∈ ( ℤ≥ ‘ 1 ) ↔ 1 ≤ 𝑗 ) ) |
| 626 |
623 624 625
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 ∈ ( ℤ≥ ‘ 1 ) ↔ 1 ≤ 𝑗 ) ) |
| 627 |
622 626
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) |
| 628 |
|
eleq1 |
⊢ ( ( ( 𝑑 ‘ 1 ) − 1 ) = if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) → ( ( ( 𝑑 ‘ 1 ) − 1 ) ∈ ℂ ↔ if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ∈ ℂ ) ) |
| 629 |
|
eleq1 |
⊢ ( ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) = if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) → ( ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ∈ ℂ ↔ if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ∈ ℂ ) ) |
| 630 |
56
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 631 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝜑 ) |
| 632 |
631 62
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 1 ≤ 𝐾 ) |
| 633 |
631 60
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝐾 ∈ ℤ ) |
| 634 |
|
eluz |
⊢ ( ( 1 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 𝐾 ∈ ( ℤ≥ ‘ 1 ) ↔ 1 ≤ 𝐾 ) ) |
| 635 |
623 633 634
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝐾 ∈ ( ℤ≥ ‘ 1 ) ↔ 1 ≤ 𝐾 ) ) |
| 636 |
632 635
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝐾 ∈ ( ℤ≥ ‘ 1 ) ) |
| 637 |
|
eluzfz1 |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... 𝐾 ) ) |
| 638 |
636 637
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 1 ∈ ( 1 ... 𝐾 ) ) |
| 639 |
630 638
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑑 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 640 |
639 90
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑑 ‘ 1 ) ∈ ℕ ) |
| 641 |
640
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑑 ‘ 1 ) ∈ ℤ ) |
| 642 |
641 623
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑑 ‘ 1 ) − 1 ) ∈ ℤ ) |
| 643 |
642
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑑 ‘ 1 ) − 1 ) ∈ ℂ ) |
| 644 |
643
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → ( ( 𝑑 ‘ 1 ) − 1 ) ∈ ℂ ) |
| 645 |
644
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ 𝑙 = 1 ) → ( ( 𝑑 ‘ 1 ) − 1 ) ∈ ℂ ) |
| 646 |
630
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 647 |
633
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝐾 ∈ ℤ ) |
| 648 |
606
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑙 ∈ ℤ ) |
| 649 |
606
|
nnge1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 1 ≤ 𝑙 ) |
| 650 |
570 647 648 649 614
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → 𝑙 ∈ ( 1 ... 𝐾 ) ) |
| 651 |
646 650
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → ( 𝑑 ‘ 𝑙 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 652 |
|
elfzelz |
⊢ ( ( 𝑑 ‘ 𝑙 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ 𝑙 ) ∈ ℤ ) |
| 653 |
651 652
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → ( 𝑑 ‘ 𝑙 ) ∈ ℤ ) |
| 654 |
653
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → ( 𝑑 ‘ 𝑙 ) ∈ ℤ ) |
| 655 |
646
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 656 |
|
1zzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → 1 ∈ ℤ ) |
| 657 |
647
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → 𝐾 ∈ ℤ ) |
| 658 |
648
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → 𝑙 ∈ ℤ ) |
| 659 |
658 656
|
zsubcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → ( 𝑙 − 1 ) ∈ ℤ ) |
| 660 |
|
neqne |
⊢ ( ¬ 𝑙 = 1 → 𝑙 ≠ 1 ) |
| 661 |
660
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → 𝑙 ≠ 1 ) |
| 662 |
609
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → 1 ∈ ℝ ) |
| 663 |
607
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → 𝑙 ∈ ℝ ) |
| 664 |
649
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → 1 ≤ 𝑙 ) |
| 665 |
662 663 664
|
leltned |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → ( 1 < 𝑙 ↔ 𝑙 ≠ 1 ) ) |
| 666 |
661 665
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → 1 < 𝑙 ) |
| 667 |
656 658
|
zltlem1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → ( 1 < 𝑙 ↔ 1 ≤ ( 𝑙 − 1 ) ) ) |
| 668 |
666 667
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → 1 ≤ ( 𝑙 − 1 ) ) |
| 669 |
659
|
zred |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → ( 𝑙 − 1 ) ∈ ℝ ) |
| 670 |
608
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → 𝐾 ∈ ℝ ) |
| 671 |
663
|
lem1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → ( 𝑙 − 1 ) ≤ 𝑙 ) |
| 672 |
614
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → 𝑙 ≤ 𝐾 ) |
| 673 |
669 663 670 671 672
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → ( 𝑙 − 1 ) ≤ 𝐾 ) |
| 674 |
656 657 659 668 673
|
elfzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → ( 𝑙 − 1 ) ∈ ( 1 ... 𝐾 ) ) |
| 675 |
655 674
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → ( 𝑑 ‘ ( 𝑙 − 1 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 676 |
|
elfzelz |
⊢ ( ( 𝑑 ‘ ( 𝑙 − 1 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ ( 𝑙 − 1 ) ) ∈ ℤ ) |
| 677 |
675 676
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → ( 𝑑 ‘ ( 𝑙 − 1 ) ) ∈ ℤ ) |
| 678 |
654 677
|
zsubcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ∈ ℤ ) |
| 679 |
678 656
|
zsubcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ∈ ℤ ) |
| 680 |
679
|
zcnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) ∧ ¬ 𝑙 = 1 ) → ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ∈ ℂ ) |
| 681 |
628 629 645 680
|
ifbothda |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑗 ) ) → if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ∈ ℂ ) |
| 682 |
|
iftrue |
⊢ ( 𝑙 = 1 → if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) = ( ( 𝑑 ‘ 1 ) − 1 ) ) |
| 683 |
627 681 682
|
fsum1p |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( 1 ... 𝑗 ) if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) = ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) ) |
| 684 |
683
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) = ( 𝑗 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) ) ) |
| 685 |
631 137
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 1 ∈ ℝ ) |
| 686 |
685
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 1 ∈ ℝ ) |
| 687 |
686 686
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( 1 + 1 ) ∈ ℝ ) |
| 688 |
|
elfzelz |
⊢ ( 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) → 𝑙 ∈ ℤ ) |
| 689 |
688
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 𝑙 ∈ ℤ ) |
| 690 |
689
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 𝑙 ∈ ℝ ) |
| 691 |
686
|
ltp1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 1 < ( 1 + 1 ) ) |
| 692 |
|
elfzle1 |
⊢ ( 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) → ( 1 + 1 ) ≤ 𝑙 ) |
| 693 |
692
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( 1 + 1 ) ≤ 𝑙 ) |
| 694 |
686 687 690 691 693
|
ltletrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 1 < 𝑙 ) |
| 695 |
686 694
|
ltned |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 1 ≠ 𝑙 ) |
| 696 |
695
|
necomd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 𝑙 ≠ 1 ) |
| 697 |
696
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ¬ 𝑙 = 1 ) |
| 698 |
697
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) = ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) |
| 699 |
698
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) = Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) |
| 700 |
699
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) = ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) |
| 701 |
700
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) ) = ( 𝑗 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) ) |
| 702 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 1 + 1 ) ... 𝑗 ) ∈ Fin ) |
| 703 |
630
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 704 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 1 ∈ ℤ ) |
| 705 |
633
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 𝐾 ∈ ℤ ) |
| 706 |
686 687 691
|
ltled |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 1 ≤ ( 1 + 1 ) ) |
| 707 |
686 687 690 706 693
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 1 ≤ 𝑙 ) |
| 708 |
582
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 𝑗 ∈ ℝ ) |
| 709 |
587
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 𝐾 ∈ ℝ ) |
| 710 |
|
elfzle2 |
⊢ ( 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) → 𝑙 ≤ 𝑗 ) |
| 711 |
710
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 𝑙 ≤ 𝑗 ) |
| 712 |
591
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 𝑗 ≤ 𝐾 ) |
| 713 |
690 708 709 711 712
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 𝑙 ≤ 𝐾 ) |
| 714 |
704 705 689 707 713
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 𝑙 ∈ ( 1 ... 𝐾 ) ) |
| 715 |
703 714
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( 𝑑 ‘ 𝑙 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 716 |
715 652
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( 𝑑 ‘ 𝑙 ) ∈ ℤ ) |
| 717 |
716
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( 𝑑 ‘ 𝑙 ) ∈ ℂ ) |
| 718 |
689 704
|
zsubcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( 𝑙 − 1 ) ∈ ℤ ) |
| 719 |
|
leaddsub |
⊢ ( ( 1 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑙 ∈ ℝ ) → ( ( 1 + 1 ) ≤ 𝑙 ↔ 1 ≤ ( 𝑙 − 1 ) ) ) |
| 720 |
686 686 690 719
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( ( 1 + 1 ) ≤ 𝑙 ↔ 1 ≤ ( 𝑙 − 1 ) ) ) |
| 721 |
693 720
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 1 ≤ ( 𝑙 − 1 ) ) |
| 722 |
690 686
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( 𝑙 − 1 ) ∈ ℝ ) |
| 723 |
690
|
lem1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( 𝑙 − 1 ) ≤ 𝑙 ) |
| 724 |
722 690 709 723 713
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( 𝑙 − 1 ) ≤ 𝐾 ) |
| 725 |
704 705 718 721 724
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( 𝑙 − 1 ) ∈ ( 1 ... 𝐾 ) ) |
| 726 |
703 725
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( 𝑑 ‘ ( 𝑙 − 1 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 727 |
676
|
zcnd |
⊢ ( ( 𝑑 ‘ ( 𝑙 − 1 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ ( 𝑙 − 1 ) ) ∈ ℂ ) |
| 728 |
726 727
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( 𝑑 ‘ ( 𝑙 − 1 ) ) ∈ ℂ ) |
| 729 |
717 728
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ∈ ℂ ) |
| 730 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 1 ∈ ℂ ) |
| 731 |
702 729 730
|
fsumsub |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) = ( Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) 1 ) ) |
| 732 |
731
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) = ( ( ( 𝑑 ‘ 1 ) − 1 ) + ( Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) 1 ) ) ) |
| 733 |
732
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) = ( 𝑗 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + ( Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) 1 ) ) ) ) |
| 734 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 1 ∈ ℂ ) |
| 735 |
|
fsumconst |
⊢ ( ( ( ( 1 + 1 ) ... 𝑗 ) ∈ Fin ∧ 1 ∈ ℂ ) → Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) 1 = ( ( ♯ ‘ ( ( 1 + 1 ) ... 𝑗 ) ) · 1 ) ) |
| 736 |
702 734 735
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) 1 = ( ( ♯ ‘ ( ( 1 + 1 ) ... 𝑗 ) ) · 1 ) ) |
| 737 |
|
hashfzp1 |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 1 ) → ( ♯ ‘ ( ( 1 + 1 ) ... 𝑗 ) ) = ( 𝑗 − 1 ) ) |
| 738 |
627 737
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ♯ ‘ ( ( 1 + 1 ) ... 𝑗 ) ) = ( 𝑗 − 1 ) ) |
| 739 |
738
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( ♯ ‘ ( ( 1 + 1 ) ... 𝑗 ) ) · 1 ) = ( ( 𝑗 − 1 ) · 1 ) ) |
| 740 |
581
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝑗 ∈ ℂ ) |
| 741 |
740 734
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 − 1 ) ∈ ℂ ) |
| 742 |
741
|
mulridd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑗 − 1 ) · 1 ) = ( 𝑗 − 1 ) ) |
| 743 |
739 742
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( ♯ ‘ ( ( 1 + 1 ) ... 𝑗 ) ) · 1 ) = ( 𝑗 − 1 ) ) |
| 744 |
736 743
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) 1 = ( 𝑗 − 1 ) ) |
| 745 |
744
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) 1 ) = ( Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − ( 𝑗 − 1 ) ) ) |
| 746 |
745
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( ( 𝑑 ‘ 1 ) − 1 ) + ( Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) 1 ) ) = ( ( ( 𝑑 ‘ 1 ) − 1 ) + ( Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − ( 𝑗 − 1 ) ) ) ) |
| 747 |
746
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + ( Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) 1 ) ) ) = ( 𝑗 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + ( Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − ( 𝑗 − 1 ) ) ) ) ) |
| 748 |
702 729
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ∈ ℂ ) |
| 749 |
643 748 741
|
addsubassd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) − ( 𝑗 − 1 ) ) = ( ( ( 𝑑 ‘ 1 ) − 1 ) + ( Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − ( 𝑗 − 1 ) ) ) ) |
| 750 |
749
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( ( 𝑑 ‘ 1 ) − 1 ) + ( Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − ( 𝑗 − 1 ) ) ) = ( ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) − ( 𝑗 − 1 ) ) ) |
| 751 |
750
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + ( Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − ( 𝑗 − 1 ) ) ) ) = ( 𝑗 + ( ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) − ( 𝑗 − 1 ) ) ) ) |
| 752 |
643 748
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) ∈ ℂ ) |
| 753 |
740 752 741
|
addsubassd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑗 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) ) − ( 𝑗 − 1 ) ) = ( 𝑗 + ( ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) − ( 𝑗 − 1 ) ) ) ) |
| 754 |
753
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + ( ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) − ( 𝑗 − 1 ) ) ) = ( ( 𝑗 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) ) − ( 𝑗 − 1 ) ) ) |
| 755 |
740 752 741
|
addsubd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑗 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) ) − ( 𝑗 − 1 ) ) = ( ( 𝑗 − ( 𝑗 − 1 ) ) + ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) ) ) |
| 756 |
740 734
|
nncand |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 − ( 𝑗 − 1 ) ) = 1 ) |
| 757 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 1 ∈ ℤ ) |
| 758 |
624 623
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 − 1 ) ∈ ℤ ) |
| 759 |
630
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 760 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 1 ∈ ℤ ) |
| 761 |
633
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝐾 ∈ ℤ ) |
| 762 |
|
elfzelz |
⊢ ( 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) → 𝑙 ∈ ℤ ) |
| 763 |
762
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑙 ∈ ℤ ) |
| 764 |
763
|
peano2zd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑙 + 1 ) ∈ ℤ ) |
| 765 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 1 ∈ ℝ ) |
| 766 |
763
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑙 ∈ ℝ ) |
| 767 |
766 765
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑙 + 1 ) ∈ ℝ ) |
| 768 |
|
elfzle1 |
⊢ ( 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) → 1 ≤ 𝑙 ) |
| 769 |
768
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 1 ≤ 𝑙 ) |
| 770 |
766
|
lep1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑙 ≤ ( 𝑙 + 1 ) ) |
| 771 |
765 766 767 769 770
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 1 ≤ ( 𝑙 + 1 ) ) |
| 772 |
582
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑗 ∈ ℝ ) |
| 773 |
772 765
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑗 − 1 ) ∈ ℝ ) |
| 774 |
587
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝐾 ∈ ℝ ) |
| 775 |
774 765
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝐾 − 1 ) ∈ ℝ ) |
| 776 |
|
elfzle2 |
⊢ ( 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) → 𝑙 ≤ ( 𝑗 − 1 ) ) |
| 777 |
776
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑙 ≤ ( 𝑗 − 1 ) ) |
| 778 |
591
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑗 ≤ 𝐾 ) |
| 779 |
772 774 765 778
|
lesub1dd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑗 − 1 ) ≤ ( 𝐾 − 1 ) ) |
| 780 |
766 773 775 777 779
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑙 ≤ ( 𝐾 − 1 ) ) |
| 781 |
|
leaddsub |
⊢ ( ( 𝑙 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐾 ∈ ℝ ) → ( ( 𝑙 + 1 ) ≤ 𝐾 ↔ 𝑙 ≤ ( 𝐾 − 1 ) ) ) |
| 782 |
766 765 774 781
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( ( 𝑙 + 1 ) ≤ 𝐾 ↔ 𝑙 ≤ ( 𝐾 − 1 ) ) ) |
| 783 |
780 782
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑙 + 1 ) ≤ 𝐾 ) |
| 784 |
760 761 764 771 783
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑙 + 1 ) ∈ ( 1 ... 𝐾 ) ) |
| 785 |
759 784
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑑 ‘ ( 𝑙 + 1 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 786 |
|
elfzelz |
⊢ ( ( 𝑑 ‘ ( 𝑙 + 1 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ ( 𝑙 + 1 ) ) ∈ ℤ ) |
| 787 |
785 786
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑑 ‘ ( 𝑙 + 1 ) ) ∈ ℤ ) |
| 788 |
582 685
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 − 1 ) ∈ ℝ ) |
| 789 |
582
|
lem1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 − 1 ) ≤ 𝑗 ) |
| 790 |
788 582 587 789 591
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 − 1 ) ≤ 𝐾 ) |
| 791 |
790
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑗 − 1 ) ≤ 𝐾 ) |
| 792 |
766 773 774 777 791
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑙 ≤ 𝐾 ) |
| 793 |
760 761 763 769 792
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → 𝑙 ∈ ( 1 ... 𝐾 ) ) |
| 794 |
759 793
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑑 ‘ 𝑙 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 795 |
794 652
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( 𝑑 ‘ 𝑙 ) ∈ ℤ ) |
| 796 |
787 795
|
zsubcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( ( 𝑑 ‘ ( 𝑙 + 1 ) ) − ( 𝑑 ‘ 𝑙 ) ) ∈ ℤ ) |
| 797 |
796
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ) → ( ( 𝑑 ‘ ( 𝑙 + 1 ) ) − ( 𝑑 ‘ 𝑙 ) ) ∈ ℂ ) |
| 798 |
|
fvoveq1 |
⊢ ( 𝑙 = ( 𝑤 − 1 ) → ( 𝑑 ‘ ( 𝑙 + 1 ) ) = ( 𝑑 ‘ ( ( 𝑤 − 1 ) + 1 ) ) ) |
| 799 |
|
fveq2 |
⊢ ( 𝑙 = ( 𝑤 − 1 ) → ( 𝑑 ‘ 𝑙 ) = ( 𝑑 ‘ ( 𝑤 − 1 ) ) ) |
| 800 |
798 799
|
oveq12d |
⊢ ( 𝑙 = ( 𝑤 − 1 ) → ( ( 𝑑 ‘ ( 𝑙 + 1 ) ) − ( 𝑑 ‘ 𝑙 ) ) = ( ( 𝑑 ‘ ( ( 𝑤 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑤 − 1 ) ) ) ) |
| 801 |
757 757 758 797 800
|
fsumshft |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ( ( 𝑑 ‘ ( 𝑙 + 1 ) ) − ( 𝑑 ‘ 𝑙 ) ) = Σ 𝑤 ∈ ( ( 1 + 1 ) ... ( ( 𝑗 − 1 ) + 1 ) ) ( ( 𝑑 ‘ ( ( 𝑤 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑤 − 1 ) ) ) ) |
| 802 |
|
oveq1 |
⊢ ( 𝑤 = 𝑙 → ( 𝑤 − 1 ) = ( 𝑙 − 1 ) ) |
| 803 |
802
|
fvoveq1d |
⊢ ( 𝑤 = 𝑙 → ( 𝑑 ‘ ( ( 𝑤 − 1 ) + 1 ) ) = ( 𝑑 ‘ ( ( 𝑙 − 1 ) + 1 ) ) ) |
| 804 |
802
|
fveq2d |
⊢ ( 𝑤 = 𝑙 → ( 𝑑 ‘ ( 𝑤 − 1 ) ) = ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) |
| 805 |
803 804
|
oveq12d |
⊢ ( 𝑤 = 𝑙 → ( ( 𝑑 ‘ ( ( 𝑤 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑤 − 1 ) ) ) = ( ( 𝑑 ‘ ( ( 𝑙 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) |
| 806 |
|
nfcv |
⊢ Ⅎ 𝑙 ( ( 𝑑 ‘ ( ( 𝑤 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑤 − 1 ) ) ) |
| 807 |
|
nfcv |
⊢ Ⅎ 𝑤 ( ( 𝑑 ‘ ( ( 𝑙 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) |
| 808 |
805 806 807
|
cbvsum |
⊢ Σ 𝑤 ∈ ( ( 1 + 1 ) ... ( ( 𝑗 − 1 ) + 1 ) ) ( ( 𝑑 ‘ ( ( 𝑤 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑤 − 1 ) ) ) = Σ 𝑙 ∈ ( ( 1 + 1 ) ... ( ( 𝑗 − 1 ) + 1 ) ) ( ( 𝑑 ‘ ( ( 𝑙 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) |
| 809 |
808
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑤 ∈ ( ( 1 + 1 ) ... ( ( 𝑗 − 1 ) + 1 ) ) ( ( 𝑑 ‘ ( ( 𝑤 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑤 − 1 ) ) ) = Σ 𝑙 ∈ ( ( 1 + 1 ) ... ( ( 𝑗 − 1 ) + 1 ) ) ( ( 𝑑 ‘ ( ( 𝑙 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) |
| 810 |
801 809
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ( ( 𝑑 ‘ ( 𝑙 + 1 ) ) − ( 𝑑 ‘ 𝑙 ) ) = Σ 𝑙 ∈ ( ( 1 + 1 ) ... ( ( 𝑗 − 1 ) + 1 ) ) ( ( 𝑑 ‘ ( ( 𝑙 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) |
| 811 |
740 734
|
npcand |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑗 − 1 ) + 1 ) = 𝑗 ) |
| 812 |
811
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 1 + 1 ) ... ( ( 𝑗 − 1 ) + 1 ) ) = ( ( 1 + 1 ) ... 𝑗 ) ) |
| 813 |
812
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( ( 1 + 1 ) ... ( ( 𝑗 − 1 ) + 1 ) ) ( ( 𝑑 ‘ ( ( 𝑙 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) = Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ ( ( 𝑙 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) |
| 814 |
690
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → 𝑙 ∈ ℂ ) |
| 815 |
814 730
|
npcand |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( ( 𝑙 − 1 ) + 1 ) = 𝑙 ) |
| 816 |
815
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( 𝑑 ‘ ( ( 𝑙 − 1 ) + 1 ) ) = ( 𝑑 ‘ 𝑙 ) ) |
| 817 |
816
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ) → ( ( 𝑑 ‘ ( ( 𝑙 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) = ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) |
| 818 |
817
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ ( ( 𝑙 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) = Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) |
| 819 |
813 818
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( ( 1 + 1 ) ... ( ( 𝑗 − 1 ) + 1 ) ) ( ( 𝑑 ‘ ( ( 𝑙 − 1 ) + 1 ) ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) = Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) |
| 820 |
810 819
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ( ( 𝑑 ‘ ( 𝑙 + 1 ) ) − ( 𝑑 ‘ 𝑙 ) ) = Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) |
| 821 |
820
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) = Σ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ( ( 𝑑 ‘ ( 𝑙 + 1 ) ) − ( 𝑑 ‘ 𝑙 ) ) ) |
| 822 |
821
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) = ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ( ( 𝑑 ‘ ( 𝑙 + 1 ) ) − ( 𝑑 ‘ 𝑙 ) ) ) ) |
| 823 |
756 822
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑗 − ( 𝑗 − 1 ) ) + ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) ) = ( 1 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ( ( 𝑑 ‘ ( 𝑙 + 1 ) ) − ( 𝑑 ‘ 𝑙 ) ) ) ) ) |
| 824 |
|
fveq2 |
⊢ ( 𝑟 = 𝑙 → ( 𝑑 ‘ 𝑟 ) = ( 𝑑 ‘ 𝑙 ) ) |
| 825 |
|
fveq2 |
⊢ ( 𝑟 = ( 𝑙 + 1 ) → ( 𝑑 ‘ 𝑟 ) = ( 𝑑 ‘ ( 𝑙 + 1 ) ) ) |
| 826 |
|
fveq2 |
⊢ ( 𝑟 = 1 → ( 𝑑 ‘ 𝑟 ) = ( 𝑑 ‘ 1 ) ) |
| 827 |
|
fveq2 |
⊢ ( 𝑟 = ( ( 𝑗 − 1 ) + 1 ) → ( 𝑑 ‘ 𝑟 ) = ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) ) |
| 828 |
811 627
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑗 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 829 |
630
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 830 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → 1 ∈ ℤ ) |
| 831 |
633
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → 𝐾 ∈ ℤ ) |
| 832 |
|
elfzelz |
⊢ ( 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) → 𝑟 ∈ ℤ ) |
| 833 |
832
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → 𝑟 ∈ ℤ ) |
| 834 |
|
elfzle1 |
⊢ ( 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) → 1 ≤ 𝑟 ) |
| 835 |
834
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → 1 ≤ 𝑟 ) |
| 836 |
833
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → 𝑟 ∈ ℝ ) |
| 837 |
582
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → 𝑗 ∈ ℝ ) |
| 838 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → 1 ∈ ℝ ) |
| 839 |
837 838
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → ( 𝑗 − 1 ) ∈ ℝ ) |
| 840 |
839 838
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → ( ( 𝑗 − 1 ) + 1 ) ∈ ℝ ) |
| 841 |
587
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → 𝐾 ∈ ℝ ) |
| 842 |
|
elfzle2 |
⊢ ( 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) → 𝑟 ≤ ( ( 𝑗 − 1 ) + 1 ) ) |
| 843 |
842
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → 𝑟 ≤ ( ( 𝑗 − 1 ) + 1 ) ) |
| 844 |
811 591
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑗 − 1 ) + 1 ) ≤ 𝐾 ) |
| 845 |
844
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → ( ( 𝑗 − 1 ) + 1 ) ≤ 𝐾 ) |
| 846 |
836 840 841 843 845
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → 𝑟 ≤ 𝐾 ) |
| 847 |
830 831 833 835 846
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → 𝑟 ∈ ( 1 ... 𝐾 ) ) |
| 848 |
829 847
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → ( 𝑑 ‘ 𝑟 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 849 |
|
elfzelz |
⊢ ( ( 𝑑 ‘ 𝑟 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ 𝑟 ) ∈ ℤ ) |
| 850 |
848 849
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → ( 𝑑 ‘ 𝑟 ) ∈ ℤ ) |
| 851 |
850
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑟 ∈ ( 1 ... ( ( 𝑗 − 1 ) + 1 ) ) ) → ( 𝑑 ‘ 𝑟 ) ∈ ℂ ) |
| 852 |
824 825 826 827 758 828 851
|
telfsum2 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ( ( 𝑑 ‘ ( 𝑙 + 1 ) ) − ( 𝑑 ‘ 𝑙 ) ) = ( ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) |
| 853 |
852
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ( ( 𝑑 ‘ ( 𝑙 + 1 ) ) − ( 𝑑 ‘ 𝑙 ) ) ) = ( ( ( 𝑑 ‘ 1 ) − 1 ) + ( ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) ) |
| 854 |
853
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 1 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ( ( 𝑑 ‘ ( 𝑙 + 1 ) ) − ( 𝑑 ‘ 𝑙 ) ) ) ) = ( 1 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + ( ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) ) ) |
| 855 |
811
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) = ( 𝑑 ‘ 𝑗 ) ) |
| 856 |
630 579
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑑 ‘ 𝑗 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 857 |
|
elfzelz |
⊢ ( ( 𝑑 ‘ 𝑗 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑑 ‘ 𝑗 ) ∈ ℤ ) |
| 858 |
856 857
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑑 ‘ 𝑗 ) ∈ ℤ ) |
| 859 |
855 858
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) ∈ ℤ ) |
| 860 |
859
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) ∈ ℂ ) |
| 861 |
640
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑑 ‘ 1 ) ∈ ℝ ) |
| 862 |
861
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑑 ‘ 1 ) ∈ ℂ ) |
| 863 |
860 862
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ∈ ℂ ) |
| 864 |
734 643 863
|
addassd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 1 + ( ( 𝑑 ‘ 1 ) − 1 ) ) + ( ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) = ( 1 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + ( ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) ) ) |
| 865 |
864
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 1 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + ( ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) ) = ( ( 1 + ( ( 𝑑 ‘ 1 ) − 1 ) ) + ( ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) ) |
| 866 |
734 862
|
pncan3d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 1 + ( ( 𝑑 ‘ 1 ) − 1 ) ) = ( 𝑑 ‘ 1 ) ) |
| 867 |
866
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 1 + ( ( 𝑑 ‘ 1 ) − 1 ) ) + ( ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) = ( ( 𝑑 ‘ 1 ) + ( ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) ) |
| 868 |
862 860
|
pncan3d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑑 ‘ 1 ) + ( ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) = ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) ) |
| 869 |
868 855
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑑 ‘ 1 ) + ( ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) = ( 𝑑 ‘ 𝑗 ) ) |
| 870 |
867 869
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 1 + ( ( 𝑑 ‘ 1 ) − 1 ) ) + ( ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) = ( 𝑑 ‘ 𝑗 ) ) |
| 871 |
865 870
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 1 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + ( ( 𝑑 ‘ ( ( 𝑗 − 1 ) + 1 ) ) − ( 𝑑 ‘ 1 ) ) ) ) = ( 𝑑 ‘ 𝑗 ) ) |
| 872 |
854 871
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 1 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( 1 ... ( 𝑗 − 1 ) ) ( ( 𝑑 ‘ ( 𝑙 + 1 ) ) − ( 𝑑 ‘ 𝑙 ) ) ) ) = ( 𝑑 ‘ 𝑗 ) ) |
| 873 |
823 872
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑗 − ( 𝑗 − 1 ) ) + ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) ) = ( 𝑑 ‘ 𝑗 ) ) |
| 874 |
755 873
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑗 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) ) − ( 𝑗 − 1 ) ) = ( 𝑑 ‘ 𝑗 ) ) |
| 875 |
754 874
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + ( ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) ) − ( 𝑗 − 1 ) ) ) = ( 𝑑 ‘ 𝑗 ) ) |
| 876 |
751 875
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + ( Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − ( 𝑗 − 1 ) ) ) ) = ( 𝑑 ‘ 𝑗 ) ) |
| 877 |
747 876
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + ( Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) 1 ) ) ) = ( 𝑑 ‘ 𝑗 ) ) |
| 878 |
733 877
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) = ( 𝑑 ‘ 𝑗 ) ) |
| 879 |
701 878
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + ( ( ( 𝑑 ‘ 1 ) − 1 ) + Σ 𝑙 ∈ ( ( 1 + 1 ) ... 𝑗 ) if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) ) = ( 𝑑 ‘ 𝑗 ) ) |
| 880 |
684 879
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) = ( 𝑑 ‘ 𝑗 ) ) |
| 881 |
621 880
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) if ( 𝑙 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑙 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑙 ) − ( 𝑑 ‘ ( 𝑙 − 1 ) ) ) − 1 ) ) ) ) = ( 𝑑 ‘ 𝑗 ) ) |
| 882 |
604 881
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑙 ) ) = ( 𝑑 ‘ 𝑗 ) ) |
| 883 |
882
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑙 ) ) = ( 𝑑 ‘ 𝑗 ) ) |
| 884 |
883
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑙 ) ) ) = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ 𝑗 ) ) ) |
| 885 |
|
nfcv |
⊢ Ⅎ 𝑞 ( 𝑑 ‘ 𝑗 ) |
| 886 |
|
nfcv |
⊢ Ⅎ 𝑗 ( 𝑑 ‘ 𝑞 ) |
| 887 |
|
fveq2 |
⊢ ( 𝑗 = 𝑞 → ( 𝑑 ‘ 𝑗 ) = ( 𝑑 ‘ 𝑞 ) ) |
| 888 |
885 886 887
|
cbvmpt |
⊢ ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ 𝑗 ) ) = ( 𝑞 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ 𝑞 ) ) |
| 889 |
888
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ 𝑗 ) ) = ( 𝑞 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ 𝑞 ) ) ) |
| 890 |
884 889
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑙 ) ) ) = ( 𝑞 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ 𝑞 ) ) ) |
| 891 |
558 890
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑑 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑑 ‘ 1 ) − 1 ) , ( ( ( 𝑑 ‘ 𝑘 ) − ( 𝑑 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) = ( 𝑞 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ 𝑞 ) ) ) |
| 892 |
33 891
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑑 ) ) = ( 𝑞 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ 𝑞 ) ) ) |
| 893 |
56
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝑑 Fn ( 1 ... 𝐾 ) ) |
| 894 |
|
dffn5 |
⊢ ( 𝑑 Fn ( 1 ... 𝐾 ) ↔ 𝑑 = ( 𝑞 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ 𝑞 ) ) ) |
| 895 |
894
|
biimpi |
⊢ ( 𝑑 Fn ( 1 ... 𝐾 ) → 𝑑 = ( 𝑞 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ 𝑞 ) ) ) |
| 896 |
893 895
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝑑 = ( 𝑞 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ 𝑞 ) ) ) |
| 897 |
896
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑞 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ 𝑞 ) ) = 𝑑 ) |
| 898 |
892 897
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑑 ) ) = 𝑑 ) |
| 899 |
898
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑑 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑑 ) ) = 𝑑 ) |