Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones12a.1 |
|- ( ph -> N e. NN0 ) |
2 |
|
sticksstones12a.2 |
|- ( ph -> K e. NN ) |
3 |
|
sticksstones12a.3 |
|- F = ( a e. A |-> ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) ) |
4 |
|
sticksstones12a.4 |
|- G = ( b e. B |-> if ( K = 0 , { <. 1 , N >. } , ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ) ) |
5 |
|
sticksstones12a.5 |
|- A = { g | ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) } |
6 |
|
sticksstones12a.6 |
|- B = { f | ( f : ( 1 ... K ) --> ( 1 ... ( N + K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) } |
7 |
4
|
a1i |
|- ( ( ph /\ d e. B ) -> G = ( b e. B |-> if ( K = 0 , { <. 1 , N >. } , ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ) ) ) |
8 |
|
0red |
|- ( ph -> 0 e. RR ) |
9 |
2
|
nngt0d |
|- ( ph -> 0 < K ) |
10 |
8 9
|
ltned |
|- ( ph -> 0 =/= K ) |
11 |
10
|
necomd |
|- ( ph -> K =/= 0 ) |
12 |
11
|
neneqd |
|- ( ph -> -. K = 0 ) |
13 |
12
|
ad2antrr |
|- ( ( ( ph /\ d e. B ) /\ b = d ) -> -. K = 0 ) |
14 |
13
|
iffalsed |
|- ( ( ( ph /\ d e. B ) /\ b = d ) -> if ( K = 0 , { <. 1 , N >. } , ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ) = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ) |
15 |
|
fveq1 |
|- ( b = d -> ( b ` K ) = ( d ` K ) ) |
16 |
15
|
oveq2d |
|- ( b = d -> ( ( N + K ) - ( b ` K ) ) = ( ( N + K ) - ( d ` K ) ) ) |
17 |
|
fveq1 |
|- ( b = d -> ( b ` 1 ) = ( d ` 1 ) ) |
18 |
17
|
oveq1d |
|- ( b = d -> ( ( b ` 1 ) - 1 ) = ( ( d ` 1 ) - 1 ) ) |
19 |
|
fveq1 |
|- ( b = d -> ( b ` k ) = ( d ` k ) ) |
20 |
|
fveq1 |
|- ( b = d -> ( b ` ( k - 1 ) ) = ( d ` ( k - 1 ) ) ) |
21 |
19 20
|
oveq12d |
|- ( b = d -> ( ( b ` k ) - ( b ` ( k - 1 ) ) ) = ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) |
22 |
21
|
oveq1d |
|- ( b = d -> ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) = ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) |
23 |
18 22
|
ifeq12d |
|- ( b = d -> if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) = if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) |
24 |
16 23
|
ifeq12d |
|- ( b = d -> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) = if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) |
25 |
24
|
adantl |
|- ( ( ( ph /\ d e. B ) /\ b = d ) -> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) = if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) |
26 |
25
|
adantr |
|- ( ( ( ( ph /\ d e. B ) /\ b = d ) /\ k e. ( 1 ... ( K + 1 ) ) ) -> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) = if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) |
27 |
26
|
mpteq2dva |
|- ( ( ( ph /\ d e. B ) /\ b = d ) -> ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ) |
28 |
14 27
|
eqtrd |
|- ( ( ( ph /\ d e. B ) /\ b = d ) -> if ( K = 0 , { <. 1 , N >. } , ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ) = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ) |
29 |
|
simpr |
|- ( ( ph /\ d e. B ) -> d e. B ) |
30 |
|
fzfid |
|- ( ( ph /\ d e. B ) -> ( 1 ... ( K + 1 ) ) e. Fin ) |
31 |
30
|
mptexd |
|- ( ( ph /\ d e. B ) -> ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) e. _V ) |
32 |
7 28 29 31
|
fvmptd |
|- ( ( ph /\ d e. B ) -> ( G ` d ) = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ) |
33 |
32
|
fveq2d |
|- ( ( ph /\ d e. B ) -> ( F ` ( G ` d ) ) = ( F ` ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ) ) |
34 |
3
|
a1i |
|- ( ( ph /\ d e. B ) -> F = ( a e. A |-> ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) ) ) |
35 |
|
simpll |
|- ( ( ( a = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> a = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ) |
36 |
35
|
fveq1d |
|- ( ( ( a = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> ( a ` l ) = ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ` l ) ) |
37 |
36
|
sumeq2dv |
|- ( ( a = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) /\ j e. ( 1 ... K ) ) -> sum_ l e. ( 1 ... j ) ( a ` l ) = sum_ l e. ( 1 ... j ) ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ` l ) ) |
38 |
37
|
oveq2d |
|- ( ( a = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) /\ j e. ( 1 ... K ) ) -> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) = ( j + sum_ l e. ( 1 ... j ) ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ` l ) ) ) |
39 |
38
|
mpteq2dva |
|- ( a = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) -> ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) = ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ` l ) ) ) ) |
40 |
39
|
adantl |
|- ( ( ( ph /\ d e. B ) /\ a = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ) -> ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) = ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ` l ) ) ) ) |
41 |
|
eleq1 |
|- ( ( ( N + K ) - ( d ` K ) ) = if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) -> ( ( ( N + K ) - ( d ` K ) ) e. NN0 <-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) e. NN0 ) ) |
42 |
|
eleq1 |
|- ( if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) = if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) -> ( if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) e. NN0 <-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) e. NN0 ) ) |
43 |
6
|
eleq2i |
|- ( d e. B <-> d e. { f | ( f : ( 1 ... K ) --> ( 1 ... ( N + K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) } ) |
44 |
|
vex |
|- d e. _V |
45 |
|
feq1 |
|- ( f = d -> ( f : ( 1 ... K ) --> ( 1 ... ( N + K ) ) <-> d : ( 1 ... K ) --> ( 1 ... ( N + K ) ) ) ) |
46 |
|
fveq1 |
|- ( f = d -> ( f ` x ) = ( d ` x ) ) |
47 |
|
fveq1 |
|- ( f = d -> ( f ` y ) = ( d ` y ) ) |
48 |
46 47
|
breq12d |
|- ( f = d -> ( ( f ` x ) < ( f ` y ) <-> ( d ` x ) < ( d ` y ) ) ) |
49 |
48
|
imbi2d |
|- ( f = d -> ( ( x < y -> ( f ` x ) < ( f ` y ) ) <-> ( x < y -> ( d ` x ) < ( d ` y ) ) ) ) |
50 |
49
|
2ralbidv |
|- ( f = d -> ( A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) <-> A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( d ` x ) < ( d ` y ) ) ) ) |
51 |
45 50
|
anbi12d |
|- ( f = d -> ( ( f : ( 1 ... K ) --> ( 1 ... ( N + K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) <-> ( d : ( 1 ... K ) --> ( 1 ... ( N + K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( d ` x ) < ( d ` y ) ) ) ) ) |
52 |
44 51
|
elab |
|- ( d e. { f | ( f : ( 1 ... K ) --> ( 1 ... ( N + K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) } <-> ( d : ( 1 ... K ) --> ( 1 ... ( N + K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( d ` x ) < ( d ` y ) ) ) ) |
53 |
43 52
|
bitri |
|- ( d e. B <-> ( d : ( 1 ... K ) --> ( 1 ... ( N + K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( d ` x ) < ( d ` y ) ) ) ) |
54 |
53
|
biimpi |
|- ( d e. B -> ( d : ( 1 ... K ) --> ( 1 ... ( N + K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( d ` x ) < ( d ` y ) ) ) ) |
55 |
54
|
adantl |
|- ( ( ph /\ d e. B ) -> ( d : ( 1 ... K ) --> ( 1 ... ( N + K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( d ` x ) < ( d ` y ) ) ) ) |
56 |
55
|
simpld |
|- ( ( ph /\ d e. B ) -> d : ( 1 ... K ) --> ( 1 ... ( N + K ) ) ) |
57 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
58 |
57
|
adantr |
|- ( ( ph /\ d e. B ) -> 1 e. ZZ ) |
59 |
2
|
nnnn0d |
|- ( ph -> K e. NN0 ) |
60 |
59
|
nn0zd |
|- ( ph -> K e. ZZ ) |
61 |
60
|
adantr |
|- ( ( ph /\ d e. B ) -> K e. ZZ ) |
62 |
2
|
nnge1d |
|- ( ph -> 1 <_ K ) |
63 |
62
|
adantr |
|- ( ( ph /\ d e. B ) -> 1 <_ K ) |
64 |
2
|
nnred |
|- ( ph -> K e. RR ) |
65 |
64
|
leidd |
|- ( ph -> K <_ K ) |
66 |
65
|
adantr |
|- ( ( ph /\ d e. B ) -> K <_ K ) |
67 |
58 61 61 63 66
|
elfzd |
|- ( ( ph /\ d e. B ) -> K e. ( 1 ... K ) ) |
68 |
56 67
|
ffvelrnd |
|- ( ( ph /\ d e. B ) -> ( d ` K ) e. ( 1 ... ( N + K ) ) ) |
69 |
|
elfzle2 |
|- ( ( d ` K ) e. ( 1 ... ( N + K ) ) -> ( d ` K ) <_ ( N + K ) ) |
70 |
68 69
|
syl |
|- ( ( ph /\ d e. B ) -> ( d ` K ) <_ ( N + K ) ) |
71 |
70
|
adantr |
|- ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) -> ( d ` K ) <_ ( N + K ) ) |
72 |
71
|
adantr |
|- ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ k = ( K + 1 ) ) -> ( d ` K ) <_ ( N + K ) ) |
73 |
|
elfznn |
|- ( ( d ` K ) e. ( 1 ... ( N + K ) ) -> ( d ` K ) e. NN ) |
74 |
73
|
nnnn0d |
|- ( ( d ` K ) e. ( 1 ... ( N + K ) ) -> ( d ` K ) e. NN0 ) |
75 |
68 74
|
syl |
|- ( ( ph /\ d e. B ) -> ( d ` K ) e. NN0 ) |
76 |
75
|
adantr |
|- ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) -> ( d ` K ) e. NN0 ) |
77 |
76
|
adantr |
|- ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ k = ( K + 1 ) ) -> ( d ` K ) e. NN0 ) |
78 |
1
|
ad3antrrr |
|- ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ k = ( K + 1 ) ) -> N e. NN0 ) |
79 |
59
|
ad3antrrr |
|- ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ k = ( K + 1 ) ) -> K e. NN0 ) |
80 |
78 79
|
nn0addcld |
|- ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ k = ( K + 1 ) ) -> ( N + K ) e. NN0 ) |
81 |
|
nn0sub |
|- ( ( ( d ` K ) e. NN0 /\ ( N + K ) e. NN0 ) -> ( ( d ` K ) <_ ( N + K ) <-> ( ( N + K ) - ( d ` K ) ) e. NN0 ) ) |
82 |
77 80 81
|
syl2anc |
|- ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ k = ( K + 1 ) ) -> ( ( d ` K ) <_ ( N + K ) <-> ( ( N + K ) - ( d ` K ) ) e. NN0 ) ) |
83 |
72 82
|
mpbid |
|- ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ k = ( K + 1 ) ) -> ( ( N + K ) - ( d ` K ) ) e. NN0 ) |
84 |
|
eleq1 |
|- ( ( ( d ` 1 ) - 1 ) = if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) -> ( ( ( d ` 1 ) - 1 ) e. NN0 <-> if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) e. NN0 ) ) |
85 |
|
eleq1 |
|- ( ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) = if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) -> ( ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) e. NN0 <-> if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) e. NN0 ) ) |
86 |
|
1le1 |
|- 1 <_ 1 |
87 |
86
|
a1i |
|- ( ( ph /\ d e. B ) -> 1 <_ 1 ) |
88 |
58 61 58 87 63
|
elfzd |
|- ( ( ph /\ d e. B ) -> 1 e. ( 1 ... K ) ) |
89 |
56 88
|
ffvelrnd |
|- ( ( ph /\ d e. B ) -> ( d ` 1 ) e. ( 1 ... ( N + K ) ) ) |
90 |
|
elfznn |
|- ( ( d ` 1 ) e. ( 1 ... ( N + K ) ) -> ( d ` 1 ) e. NN ) |
91 |
89 90
|
syl |
|- ( ( ph /\ d e. B ) -> ( d ` 1 ) e. NN ) |
92 |
|
nnm1nn0 |
|- ( ( d ` 1 ) e. NN -> ( ( d ` 1 ) - 1 ) e. NN0 ) |
93 |
91 92
|
syl |
|- ( ( ph /\ d e. B ) -> ( ( d ` 1 ) - 1 ) e. NN0 ) |
94 |
93
|
adantr |
|- ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) -> ( ( d ` 1 ) - 1 ) e. NN0 ) |
95 |
94
|
adantr |
|- ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> ( ( d ` 1 ) - 1 ) e. NN0 ) |
96 |
95
|
adantr |
|- ( ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ k = 1 ) -> ( ( d ` 1 ) - 1 ) e. NN0 ) |
97 |
56
|
ad3antrrr |
|- ( ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> d : ( 1 ... K ) --> ( 1 ... ( N + K ) ) ) |
98 |
|
1zzd |
|- ( ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> 1 e. ZZ ) |
99 |
61
|
ad3antrrr |
|- ( ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> K e. ZZ ) |
100 |
|
elfznn |
|- ( k e. ( 1 ... ( K + 1 ) ) -> k e. NN ) |
101 |
100
|
nnzd |
|- ( k e. ( 1 ... ( K + 1 ) ) -> k e. ZZ ) |
102 |
101
|
ad3antlr |
|- ( ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> k e. ZZ ) |
103 |
|
elfzle1 |
|- ( k e. ( 1 ... ( K + 1 ) ) -> 1 <_ k ) |
104 |
103
|
ad3antlr |
|- ( ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> 1 <_ k ) |
105 |
|
neqne |
|- ( -. k = ( K + 1 ) -> k =/= ( K + 1 ) ) |
106 |
105
|
adantl |
|- ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> k =/= ( K + 1 ) ) |
107 |
106
|
necomd |
|- ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> ( K + 1 ) =/= k ) |
108 |
100
|
ad2antlr |
|- ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> k e. NN ) |
109 |
108
|
nnred |
|- ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> k e. RR ) |
110 |
64
|
ad3antrrr |
|- ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> K e. RR ) |
111 |
|
1red |
|- ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> 1 e. RR ) |
112 |
110 111
|
readdcld |
|- ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> ( K + 1 ) e. RR ) |
113 |
|
elfzle2 |
|- ( k e. ( 1 ... ( K + 1 ) ) -> k <_ ( K + 1 ) ) |
114 |
113
|
ad2antlr |
|- ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> k <_ ( K + 1 ) ) |
115 |
109 112 114
|
leltned |
|- ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> ( k < ( K + 1 ) <-> ( K + 1 ) =/= k ) ) |
116 |
107 115
|
mpbird |
|- ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> k < ( K + 1 ) ) |
117 |
101
|
ad2antlr |
|- ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> k e. ZZ ) |
118 |
61
|
ad2antrr |
|- ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> K e. ZZ ) |
119 |
|
zleltp1 |
|- ( ( k e. ZZ /\ K e. ZZ ) -> ( k <_ K <-> k < ( K + 1 ) ) ) |
120 |
117 118 119
|
syl2anc |
|- ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> ( k <_ K <-> k < ( K + 1 ) ) ) |
121 |
116 120
|
mpbird |
|- ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> k <_ K ) |
122 |
121
|
adantr |
|- ( ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> k <_ K ) |
123 |
98 99 102 104 122
|
elfzd |
|- ( ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> k e. ( 1 ... K ) ) |
124 |
97 123
|
ffvelrnd |
|- ( ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( d ` k ) e. ( 1 ... ( N + K ) ) ) |
125 |
|
elfznn |
|- ( ( d ` k ) e. ( 1 ... ( N + K ) ) -> ( d ` k ) e. NN ) |
126 |
125
|
nnzd |
|- ( ( d ` k ) e. ( 1 ... ( N + K ) ) -> ( d ` k ) e. ZZ ) |
127 |
124 126
|
syl |
|- ( ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( d ` k ) e. ZZ ) |
128 |
|
1zzd |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> 1 e. ZZ ) |
129 |
60
|
ad2antrr |
|- ( ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = 1 ) -> K e. ZZ ) |
130 |
129
|
3impa |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> K e. ZZ ) |
131 |
101
|
adantl |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) ) -> k e. ZZ ) |
132 |
131
|
adantr |
|- ( ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = 1 ) -> k e. ZZ ) |
133 |
132
|
3impa |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> k e. ZZ ) |
134 |
133 128
|
zsubcld |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> ( k - 1 ) e. ZZ ) |
135 |
|
neqne |
|- ( -. k = 1 -> k =/= 1 ) |
136 |
135
|
3ad2ant3 |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> k =/= 1 ) |
137 |
|
1red |
|- ( ph -> 1 e. RR ) |
138 |
137
|
3ad2ant1 |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> 1 e. RR ) |
139 |
133
|
zred |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> k e. RR ) |
140 |
|
simp2 |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> k e. ( 1 ... ( K + 1 ) ) ) |
141 |
140 103
|
syl |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> 1 <_ k ) |
142 |
138 139 141
|
leltned |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> ( 1 < k <-> k =/= 1 ) ) |
143 |
136 142
|
mpbird |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> 1 < k ) |
144 |
128 133
|
zltp1led |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> ( 1 < k <-> ( 1 + 1 ) <_ k ) ) |
145 |
143 144
|
mpbid |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> ( 1 + 1 ) <_ k ) |
146 |
|
leaddsub |
|- ( ( 1 e. RR /\ 1 e. RR /\ k e. RR ) -> ( ( 1 + 1 ) <_ k <-> 1 <_ ( k - 1 ) ) ) |
147 |
138 138 139 146
|
syl3anc |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> ( ( 1 + 1 ) <_ k <-> 1 <_ ( k - 1 ) ) ) |
148 |
145 147
|
mpbid |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> 1 <_ ( k - 1 ) ) |
149 |
134
|
zred |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> ( k - 1 ) e. RR ) |
150 |
64
|
3ad2ant1 |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> K e. RR ) |
151 |
|
1red |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> 1 e. RR ) |
152 |
150 151
|
readdcld |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> ( K + 1 ) e. RR ) |
153 |
152 151
|
resubcld |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> ( ( K + 1 ) - 1 ) e. RR ) |
154 |
113
|
3ad2ant2 |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> k <_ ( K + 1 ) ) |
155 |
139 152 151 154
|
lesub1dd |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> ( k - 1 ) <_ ( ( K + 1 ) - 1 ) ) |
156 |
64
|
recnd |
|- ( ph -> K e. CC ) |
157 |
156
|
3ad2ant1 |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> K e. CC ) |
158 |
|
1cnd |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> 1 e. CC ) |
159 |
157 158
|
pncand |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> ( ( K + 1 ) - 1 ) = K ) |
160 |
65
|
3ad2ant1 |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> K <_ K ) |
161 |
159 160
|
eqbrtrd |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> ( ( K + 1 ) - 1 ) <_ K ) |
162 |
149 153 150 155 161
|
letrd |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> ( k - 1 ) <_ K ) |
163 |
128 130 134 148 162
|
elfzd |
|- ( ( ph /\ k e. ( 1 ... ( K + 1 ) ) /\ -. k = 1 ) -> ( k - 1 ) e. ( 1 ... K ) ) |
164 |
163
|
ad5ant135 |
|- ( ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( k - 1 ) e. ( 1 ... K ) ) |
165 |
97 164
|
ffvelrnd |
|- ( ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( d ` ( k - 1 ) ) e. ( 1 ... ( N + K ) ) ) |
166 |
|
elfznn |
|- ( ( d ` ( k - 1 ) ) e. ( 1 ... ( N + K ) ) -> ( d ` ( k - 1 ) ) e. NN ) |
167 |
165 166
|
syl |
|- ( ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( d ` ( k - 1 ) ) e. NN ) |
168 |
167
|
nnzd |
|- ( ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( d ` ( k - 1 ) ) e. ZZ ) |
169 |
127 168
|
zsubcld |
|- ( ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( d ` k ) - ( d ` ( k - 1 ) ) ) e. ZZ ) |
170 |
169 98
|
zsubcld |
|- ( ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) e. ZZ ) |
171 |
108
|
adantr |
|- ( ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> k e. NN ) |
172 |
171
|
nnred |
|- ( ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> k e. RR ) |
173 |
172
|
ltm1d |
|- ( ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( k - 1 ) < k ) |
174 |
164 123
|
jca |
|- ( ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( k - 1 ) e. ( 1 ... K ) /\ k e. ( 1 ... K ) ) ) |
175 |
55
|
simprd |
|- ( ( ph /\ d e. B ) -> A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( d ` x ) < ( d ` y ) ) ) |
176 |
175
|
ad3antrrr |
|- ( ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( d ` x ) < ( d ` y ) ) ) |
177 |
|
breq1 |
|- ( x = ( k - 1 ) -> ( x < y <-> ( k - 1 ) < y ) ) |
178 |
|
fveq2 |
|- ( x = ( k - 1 ) -> ( d ` x ) = ( d ` ( k - 1 ) ) ) |
179 |
178
|
breq1d |
|- ( x = ( k - 1 ) -> ( ( d ` x ) < ( d ` y ) <-> ( d ` ( k - 1 ) ) < ( d ` y ) ) ) |
180 |
177 179
|
imbi12d |
|- ( x = ( k - 1 ) -> ( ( x < y -> ( d ` x ) < ( d ` y ) ) <-> ( ( k - 1 ) < y -> ( d ` ( k - 1 ) ) < ( d ` y ) ) ) ) |
181 |
|
breq2 |
|- ( y = k -> ( ( k - 1 ) < y <-> ( k - 1 ) < k ) ) |
182 |
|
fveq2 |
|- ( y = k -> ( d ` y ) = ( d ` k ) ) |
183 |
182
|
breq2d |
|- ( y = k -> ( ( d ` ( k - 1 ) ) < ( d ` y ) <-> ( d ` ( k - 1 ) ) < ( d ` k ) ) ) |
184 |
181 183
|
imbi12d |
|- ( y = k -> ( ( ( k - 1 ) < y -> ( d ` ( k - 1 ) ) < ( d ` y ) ) <-> ( ( k - 1 ) < k -> ( d ` ( k - 1 ) ) < ( d ` k ) ) ) ) |
185 |
180 184
|
rspc2va |
|- ( ( ( ( k - 1 ) e. ( 1 ... K ) /\ k e. ( 1 ... K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( d ` x ) < ( d ` y ) ) ) -> ( ( k - 1 ) < k -> ( d ` ( k - 1 ) ) < ( d ` k ) ) ) |
186 |
174 176 185
|
syl2anc |
|- ( ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( k - 1 ) < k -> ( d ` ( k - 1 ) ) < ( d ` k ) ) ) |
187 |
173 186
|
mpd |
|- ( ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( d ` ( k - 1 ) ) < ( d ` k ) ) |
188 |
167
|
nnred |
|- ( ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( d ` ( k - 1 ) ) e. RR ) |
189 |
127
|
zred |
|- ( ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( d ` k ) e. RR ) |
190 |
188 189
|
posdifd |
|- ( ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( d ` ( k - 1 ) ) < ( d ` k ) <-> 0 < ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) ) |
191 |
187 190
|
mpbid |
|- ( ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> 0 < ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) |
192 |
|
0zd |
|- ( ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> 0 e. ZZ ) |
193 |
192 169
|
zltlem1d |
|- ( ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( 0 < ( ( d ` k ) - ( d ` ( k - 1 ) ) ) <-> 0 <_ ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) |
194 |
191 193
|
mpbid |
|- ( ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> 0 <_ ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) |
195 |
170 194
|
jca |
|- ( ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) e. ZZ /\ 0 <_ ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) |
196 |
|
elnn0z |
|- ( ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) e. NN0 <-> ( ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) e. ZZ /\ 0 <_ ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) |
197 |
195 196
|
sylibr |
|- ( ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) e. NN0 ) |
198 |
84 85 96 197
|
ifbothda |
|- ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) e. NN0 ) |
199 |
41 42 83 198
|
ifbothda |
|- ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) -> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) e. NN0 ) |
200 |
|
eqid |
|- ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) |
201 |
199 200
|
fmptd |
|- ( ( ph /\ d e. B ) -> ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) : ( 1 ... ( K + 1 ) ) --> NN0 ) |
202 |
|
eqidd |
|- ( ( ( ph /\ d e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) -> ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ) |
203 |
|
simpr |
|- ( ( ( ( ph /\ d e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) /\ k = i ) -> k = i ) |
204 |
203
|
eqeq1d |
|- ( ( ( ( ph /\ d e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) /\ k = i ) -> ( k = ( K + 1 ) <-> i = ( K + 1 ) ) ) |
205 |
203
|
eqeq1d |
|- ( ( ( ( ph /\ d e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) /\ k = i ) -> ( k = 1 <-> i = 1 ) ) |
206 |
203
|
fveq2d |
|- ( ( ( ( ph /\ d e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) /\ k = i ) -> ( d ` k ) = ( d ` i ) ) |
207 |
203
|
fvoveq1d |
|- ( ( ( ( ph /\ d e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) /\ k = i ) -> ( d ` ( k - 1 ) ) = ( d ` ( i - 1 ) ) ) |
208 |
206 207
|
oveq12d |
|- ( ( ( ( ph /\ d e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) /\ k = i ) -> ( ( d ` k ) - ( d ` ( k - 1 ) ) ) = ( ( d ` i ) - ( d ` ( i - 1 ) ) ) ) |
209 |
208
|
oveq1d |
|- ( ( ( ( ph /\ d e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) /\ k = i ) -> ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) = ( ( ( d ` i ) - ( d ` ( i - 1 ) ) ) - 1 ) ) |
210 |
205 209
|
ifbieq2d |
|- ( ( ( ( ph /\ d e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) /\ k = i ) -> if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) = if ( i = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` i ) - ( d ` ( i - 1 ) ) ) - 1 ) ) ) |
211 |
204 210
|
ifbieq2d |
|- ( ( ( ( ph /\ d e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) /\ k = i ) -> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) = if ( i = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( i = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` i ) - ( d ` ( i - 1 ) ) ) - 1 ) ) ) ) |
212 |
|
simpr |
|- ( ( ( ph /\ d e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) -> i e. ( 1 ... ( K + 1 ) ) ) |
213 |
|
ovexd |
|- ( ( ( ph /\ d e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) -> ( ( N + K ) - ( d ` K ) ) e. _V ) |
214 |
|
ovexd |
|- ( ( ( ph /\ d e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) -> ( ( d ` 1 ) - 1 ) e. _V ) |
215 |
|
ovexd |
|- ( ( ( ph /\ d e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) -> ( ( ( d ` i ) - ( d ` ( i - 1 ) ) ) - 1 ) e. _V ) |
216 |
214 215
|
ifcld |
|- ( ( ( ph /\ d e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) -> if ( i = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` i ) - ( d ` ( i - 1 ) ) ) - 1 ) ) e. _V ) |
217 |
213 216
|
ifcld |
|- ( ( ( ph /\ d e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) -> if ( i = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( i = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` i ) - ( d ` ( i - 1 ) ) ) - 1 ) ) ) e. _V ) |
218 |
202 211 212 217
|
fvmptd |
|- ( ( ( ph /\ d e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) -> ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ` i ) = if ( i = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( i = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` i ) - ( d ` ( i - 1 ) ) ) - 1 ) ) ) ) |
219 |
218
|
sumeq2dv |
|- ( ( ph /\ d e. B ) -> sum_ i e. ( 1 ... ( K + 1 ) ) ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ` i ) = sum_ i e. ( 1 ... ( K + 1 ) ) if ( i = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( i = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` i ) - ( d ` ( i - 1 ) ) ) - 1 ) ) ) ) |
220 |
|
eqeq1 |
|- ( i = k -> ( i = ( K + 1 ) <-> k = ( K + 1 ) ) ) |
221 |
|
eqeq1 |
|- ( i = k -> ( i = 1 <-> k = 1 ) ) |
222 |
|
fveq2 |
|- ( i = k -> ( d ` i ) = ( d ` k ) ) |
223 |
|
fvoveq1 |
|- ( i = k -> ( d ` ( i - 1 ) ) = ( d ` ( k - 1 ) ) ) |
224 |
222 223
|
oveq12d |
|- ( i = k -> ( ( d ` i ) - ( d ` ( i - 1 ) ) ) = ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) |
225 |
224
|
oveq1d |
|- ( i = k -> ( ( ( d ` i ) - ( d ` ( i - 1 ) ) ) - 1 ) = ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) |
226 |
221 225
|
ifbieq2d |
|- ( i = k -> if ( i = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` i ) - ( d ` ( i - 1 ) ) ) - 1 ) ) = if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) |
227 |
220 226
|
ifbieq2d |
|- ( i = k -> if ( i = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( i = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` i ) - ( d ` ( i - 1 ) ) ) - 1 ) ) ) = if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) |
228 |
|
nfcv |
|- F/_ k ( 1 ... ( K + 1 ) ) |
229 |
|
nfcv |
|- F/_ i ( 1 ... ( K + 1 ) ) |
230 |
|
nfcv |
|- F/_ k if ( i = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( i = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` i ) - ( d ` ( i - 1 ) ) ) - 1 ) ) ) |
231 |
|
nfcv |
|- F/_ i if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) |
232 |
227 228 229 230 231
|
cbvsum |
|- sum_ i e. ( 1 ... ( K + 1 ) ) if ( i = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( i = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` i ) - ( d ` ( i - 1 ) ) ) - 1 ) ) ) = sum_ k e. ( 1 ... ( K + 1 ) ) if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) |
233 |
232
|
a1i |
|- ( ( ph /\ d e. B ) -> sum_ i e. ( 1 ... ( K + 1 ) ) if ( i = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( i = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` i ) - ( d ` ( i - 1 ) ) ) - 1 ) ) ) = sum_ k e. ( 1 ... ( K + 1 ) ) if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) |
234 |
|
eqid |
|- 1 = 1 |
235 |
|
1p0e1 |
|- ( 1 + 0 ) = 1 |
236 |
234 235
|
eqtr4i |
|- 1 = ( 1 + 0 ) |
237 |
236
|
a1i |
|- ( ph -> 1 = ( 1 + 0 ) ) |
238 |
|
0le1 |
|- 0 <_ 1 |
239 |
238
|
a1i |
|- ( ph -> 0 <_ 1 ) |
240 |
137 8 64 137 62 239
|
le2addd |
|- ( ph -> ( 1 + 0 ) <_ ( K + 1 ) ) |
241 |
237 240
|
eqbrtrd |
|- ( ph -> 1 <_ ( K + 1 ) ) |
242 |
60
|
peano2zd |
|- ( ph -> ( K + 1 ) e. ZZ ) |
243 |
|
eluz |
|- ( ( 1 e. ZZ /\ ( K + 1 ) e. ZZ ) -> ( ( K + 1 ) e. ( ZZ>= ` 1 ) <-> 1 <_ ( K + 1 ) ) ) |
244 |
57 242 243
|
syl2anc |
|- ( ph -> ( ( K + 1 ) e. ( ZZ>= ` 1 ) <-> 1 <_ ( K + 1 ) ) ) |
245 |
241 244
|
mpbird |
|- ( ph -> ( K + 1 ) e. ( ZZ>= ` 1 ) ) |
246 |
245
|
adantr |
|- ( ( ph /\ d e. B ) -> ( K + 1 ) e. ( ZZ>= ` 1 ) ) |
247 |
199
|
nn0cnd |
|- ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) -> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) e. CC ) |
248 |
|
eqeq1 |
|- ( k = ( K + 1 ) -> ( k = ( K + 1 ) <-> ( K + 1 ) = ( K + 1 ) ) ) |
249 |
|
eqeq1 |
|- ( k = ( K + 1 ) -> ( k = 1 <-> ( K + 1 ) = 1 ) ) |
250 |
|
fveq2 |
|- ( k = ( K + 1 ) -> ( d ` k ) = ( d ` ( K + 1 ) ) ) |
251 |
|
fvoveq1 |
|- ( k = ( K + 1 ) -> ( d ` ( k - 1 ) ) = ( d ` ( ( K + 1 ) - 1 ) ) ) |
252 |
250 251
|
oveq12d |
|- ( k = ( K + 1 ) -> ( ( d ` k ) - ( d ` ( k - 1 ) ) ) = ( ( d ` ( K + 1 ) ) - ( d ` ( ( K + 1 ) - 1 ) ) ) ) |
253 |
252
|
oveq1d |
|- ( k = ( K + 1 ) -> ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) = ( ( ( d ` ( K + 1 ) ) - ( d ` ( ( K + 1 ) - 1 ) ) ) - 1 ) ) |
254 |
249 253
|
ifbieq2d |
|- ( k = ( K + 1 ) -> if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) = if ( ( K + 1 ) = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` ( K + 1 ) ) - ( d ` ( ( K + 1 ) - 1 ) ) ) - 1 ) ) ) |
255 |
248 254
|
ifbieq2d |
|- ( k = ( K + 1 ) -> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) = if ( ( K + 1 ) = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( ( K + 1 ) = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` ( K + 1 ) ) - ( d ` ( ( K + 1 ) - 1 ) ) ) - 1 ) ) ) ) |
256 |
246 247 255
|
fsumm1 |
|- ( ( ph /\ d e. B ) -> sum_ k e. ( 1 ... ( K + 1 ) ) if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) = ( sum_ k e. ( 1 ... ( ( K + 1 ) - 1 ) ) if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) + if ( ( K + 1 ) = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( ( K + 1 ) = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` ( K + 1 ) ) - ( d ` ( ( K + 1 ) - 1 ) ) ) - 1 ) ) ) ) ) |
257 |
156
|
adantr |
|- ( ( ph /\ d e. B ) -> K e. CC ) |
258 |
|
1cnd |
|- ( ( ph /\ d e. B ) -> 1 e. CC ) |
259 |
257 258
|
pncand |
|- ( ( ph /\ d e. B ) -> ( ( K + 1 ) - 1 ) = K ) |
260 |
259
|
oveq2d |
|- ( ( ph /\ d e. B ) -> ( 1 ... ( ( K + 1 ) - 1 ) ) = ( 1 ... K ) ) |
261 |
260
|
sumeq1d |
|- ( ( ph /\ d e. B ) -> sum_ k e. ( 1 ... ( ( K + 1 ) - 1 ) ) if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) = sum_ k e. ( 1 ... K ) if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) |
262 |
|
eqidd |
|- ( ( ph /\ d e. B ) -> ( K + 1 ) = ( K + 1 ) ) |
263 |
262
|
iftrued |
|- ( ( ph /\ d e. B ) -> if ( ( K + 1 ) = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( ( K + 1 ) = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` ( K + 1 ) ) - ( d ` ( ( K + 1 ) - 1 ) ) ) - 1 ) ) ) = ( ( N + K ) - ( d ` K ) ) ) |
264 |
261 263
|
oveq12d |
|- ( ( ph /\ d e. B ) -> ( sum_ k e. ( 1 ... ( ( K + 1 ) - 1 ) ) if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) + if ( ( K + 1 ) = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( ( K + 1 ) = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` ( K + 1 ) ) - ( d ` ( ( K + 1 ) - 1 ) ) ) - 1 ) ) ) ) = ( sum_ k e. ( 1 ... K ) if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) + ( ( N + K ) - ( d ` K ) ) ) ) |
265 |
|
elfzelz |
|- ( k e. ( 1 ... K ) -> k e. ZZ ) |
266 |
265
|
adantl |
|- ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... K ) ) -> k e. ZZ ) |
267 |
266
|
zred |
|- ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... K ) ) -> k e. RR ) |
268 |
64
|
ad2antrr |
|- ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... K ) ) -> K e. RR ) |
269 |
|
1red |
|- ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... K ) ) -> 1 e. RR ) |
270 |
268 269
|
readdcld |
|- ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... K ) ) -> ( K + 1 ) e. RR ) |
271 |
|
elfzle2 |
|- ( k e. ( 1 ... K ) -> k <_ K ) |
272 |
271
|
adantl |
|- ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... K ) ) -> k <_ K ) |
273 |
268
|
ltp1d |
|- ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... K ) ) -> K < ( K + 1 ) ) |
274 |
267 268 270 272 273
|
lelttrd |
|- ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... K ) ) -> k < ( K + 1 ) ) |
275 |
267 274
|
ltned |
|- ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... K ) ) -> k =/= ( K + 1 ) ) |
276 |
275
|
neneqd |
|- ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... K ) ) -> -. k = ( K + 1 ) ) |
277 |
276
|
iffalsed |
|- ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... K ) ) -> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) = if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) |
278 |
277
|
sumeq2dv |
|- ( ( ph /\ d e. B ) -> sum_ k e. ( 1 ... K ) if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) = sum_ k e. ( 1 ... K ) if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) |
279 |
|
eqeq1 |
|- ( ( ( d ` 1 ) - 1 ) = if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) -> ( ( ( d ` 1 ) - 1 ) = ( if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) - 1 ) <-> if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) = ( if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) - 1 ) ) ) |
280 |
|
eqeq1 |
|- ( ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) = if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) -> ( ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) = ( if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) - 1 ) <-> if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) = ( if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) - 1 ) ) ) |
281 |
|
simpr |
|- ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... K ) ) /\ k = 1 ) -> k = 1 ) |
282 |
281
|
iftrued |
|- ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... K ) ) /\ k = 1 ) -> if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) = ( d ` 1 ) ) |
283 |
282
|
eqcomd |
|- ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... K ) ) /\ k = 1 ) -> ( d ` 1 ) = if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) ) |
284 |
283
|
oveq1d |
|- ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... K ) ) /\ k = 1 ) -> ( ( d ` 1 ) - 1 ) = ( if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) - 1 ) ) |
285 |
|
simpr |
|- ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... K ) ) /\ -. k = 1 ) -> -. k = 1 ) |
286 |
285
|
iffalsed |
|- ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... K ) ) /\ -. k = 1 ) -> if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) = ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) |
287 |
286
|
eqcomd |
|- ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... K ) ) /\ -. k = 1 ) -> ( ( d ` k ) - ( d ` ( k - 1 ) ) ) = if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) ) |
288 |
287
|
oveq1d |
|- ( ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... K ) ) /\ -. k = 1 ) -> ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) = ( if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) - 1 ) ) |
289 |
279 280 284 288
|
ifbothda |
|- ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... K ) ) -> if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) = ( if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) - 1 ) ) |
290 |
289
|
sumeq2dv |
|- ( ( ph /\ d e. B ) -> sum_ k e. ( 1 ... K ) if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) = sum_ k e. ( 1 ... K ) ( if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) - 1 ) ) |
291 |
|
fzfid |
|- ( ( ph /\ d e. B ) -> ( 1 ... K ) e. Fin ) |
292 |
|
eleq1 |
|- ( ( d ` 1 ) = if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) -> ( ( d ` 1 ) e. ZZ <-> if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) e. ZZ ) ) |
293 |
|
eleq1 |
|- ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) = if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) -> ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) e. ZZ <-> if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) e. ZZ ) ) |
294 |
56
|
3adant3 |
|- ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) -> d : ( 1 ... K ) --> ( 1 ... ( N + K ) ) ) |
295 |
88
|
3adant3 |
|- ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) -> 1 e. ( 1 ... K ) ) |
296 |
294 295
|
ffvelrnd |
|- ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) -> ( d ` 1 ) e. ( 1 ... ( N + K ) ) ) |
297 |
90
|
nnzd |
|- ( ( d ` 1 ) e. ( 1 ... ( N + K ) ) -> ( d ` 1 ) e. ZZ ) |
298 |
296 297
|
syl |
|- ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) -> ( d ` 1 ) e. ZZ ) |
299 |
298
|
adantr |
|- ( ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) /\ k = 1 ) -> ( d ` 1 ) e. ZZ ) |
300 |
|
simp3 |
|- ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) -> k e. ( 1 ... K ) ) |
301 |
294 300
|
ffvelrnd |
|- ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) -> ( d ` k ) e. ( 1 ... ( N + K ) ) ) |
302 |
301 126
|
syl |
|- ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) -> ( d ` k ) e. ZZ ) |
303 |
302
|
adantr |
|- ( ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) /\ -. k = 1 ) -> ( d ` k ) e. ZZ ) |
304 |
294
|
adantr |
|- ( ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) /\ -. k = 1 ) -> d : ( 1 ... K ) --> ( 1 ... ( N + K ) ) ) |
305 |
|
1zzd |
|- ( ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) /\ -. k = 1 ) -> 1 e. ZZ ) |
306 |
61
|
3adant3 |
|- ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) -> K e. ZZ ) |
307 |
306
|
adantr |
|- ( ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) /\ -. k = 1 ) -> K e. ZZ ) |
308 |
266
|
3impa |
|- ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) -> k e. ZZ ) |
309 |
308
|
adantr |
|- ( ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) /\ -. k = 1 ) -> k e. ZZ ) |
310 |
309 305
|
zsubcld |
|- ( ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) /\ -. k = 1 ) -> ( k - 1 ) e. ZZ ) |
311 |
|
elfzle1 |
|- ( k e. ( 1 ... K ) -> 1 <_ k ) |
312 |
300 311
|
syl |
|- ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) -> 1 <_ k ) |
313 |
312
|
adantr |
|- ( ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) /\ -. k = 1 ) -> 1 <_ k ) |
314 |
135
|
adantl |
|- ( ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) /\ -. k = 1 ) -> k =/= 1 ) |
315 |
313 314
|
jca |
|- ( ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) /\ -. k = 1 ) -> ( 1 <_ k /\ k =/= 1 ) ) |
316 |
|
1red |
|- ( ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) /\ -. k = 1 ) -> 1 e. RR ) |
317 |
309
|
zred |
|- ( ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) /\ -. k = 1 ) -> k e. RR ) |
318 |
316 317
|
ltlend |
|- ( ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) /\ -. k = 1 ) -> ( 1 < k <-> ( 1 <_ k /\ k =/= 1 ) ) ) |
319 |
315 318
|
mpbird |
|- ( ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) /\ -. k = 1 ) -> 1 < k ) |
320 |
305 309
|
zltlem1d |
|- ( ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) /\ -. k = 1 ) -> ( 1 < k <-> 1 <_ ( k - 1 ) ) ) |
321 |
319 320
|
mpbid |
|- ( ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) /\ -. k = 1 ) -> 1 <_ ( k - 1 ) ) |
322 |
310
|
zred |
|- ( ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) /\ -. k = 1 ) -> ( k - 1 ) e. RR ) |
323 |
307
|
zred |
|- ( ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) /\ -. k = 1 ) -> K e. RR ) |
324 |
317
|
lem1d |
|- ( ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) /\ -. k = 1 ) -> ( k - 1 ) <_ k ) |
325 |
300 271
|
syl |
|- ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) -> k <_ K ) |
326 |
325
|
adantr |
|- ( ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) /\ -. k = 1 ) -> k <_ K ) |
327 |
322 317 323 324 326
|
letrd |
|- ( ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) /\ -. k = 1 ) -> ( k - 1 ) <_ K ) |
328 |
305 307 310 321 327
|
elfzd |
|- ( ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) /\ -. k = 1 ) -> ( k - 1 ) e. ( 1 ... K ) ) |
329 |
304 328
|
ffvelrnd |
|- ( ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) /\ -. k = 1 ) -> ( d ` ( k - 1 ) ) e. ( 1 ... ( N + K ) ) ) |
330 |
329 166
|
syl |
|- ( ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) /\ -. k = 1 ) -> ( d ` ( k - 1 ) ) e. NN ) |
331 |
330
|
nnzd |
|- ( ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) /\ -. k = 1 ) -> ( d ` ( k - 1 ) ) e. ZZ ) |
332 |
303 331
|
zsubcld |
|- ( ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) /\ -. k = 1 ) -> ( ( d ` k ) - ( d ` ( k - 1 ) ) ) e. ZZ ) |
333 |
292 293 299 332
|
ifbothda |
|- ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) -> if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) e. ZZ ) |
334 |
333
|
3expa |
|- ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... K ) ) -> if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) e. ZZ ) |
335 |
334
|
zcnd |
|- ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... K ) ) -> if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) e. CC ) |
336 |
258
|
adantr |
|- ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... K ) ) -> 1 e. CC ) |
337 |
291 335 336
|
fsumsub |
|- ( ( ph /\ d e. B ) -> sum_ k e. ( 1 ... K ) ( if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) - 1 ) = ( sum_ k e. ( 1 ... K ) if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) - sum_ k e. ( 1 ... K ) 1 ) ) |
338 |
|
simpr |
|- ( ( ( ph /\ d e. B ) /\ 1 = K ) -> 1 = K ) |
339 |
338
|
oveq2d |
|- ( ( ( ph /\ d e. B ) /\ 1 = K ) -> ( 1 ... 1 ) = ( 1 ... K ) ) |
340 |
339
|
eqcomd |
|- ( ( ( ph /\ d e. B ) /\ 1 = K ) -> ( 1 ... K ) = ( 1 ... 1 ) ) |
341 |
340
|
sumeq1d |
|- ( ( ( ph /\ d e. B ) /\ 1 = K ) -> sum_ k e. ( 1 ... K ) if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) = sum_ k e. ( 1 ... 1 ) if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) ) |
342 |
|
1zzd |
|- ( ( ph /\ d e. B ) -> 1 e. ZZ ) |
343 |
234
|
a1i |
|- ( ( ph /\ d e. B ) -> 1 = 1 ) |
344 |
343
|
iftrued |
|- ( ( ph /\ d e. B ) -> if ( 1 = 1 , ( d ` 1 ) , ( ( d ` 1 ) - ( d ` ( 1 - 1 ) ) ) ) = ( d ` 1 ) ) |
345 |
91
|
nncnd |
|- ( ( ph /\ d e. B ) -> ( d ` 1 ) e. CC ) |
346 |
344 345
|
eqeltrd |
|- ( ( ph /\ d e. B ) -> if ( 1 = 1 , ( d ` 1 ) , ( ( d ` 1 ) - ( d ` ( 1 - 1 ) ) ) ) e. CC ) |
347 |
|
eqeq1 |
|- ( k = 1 -> ( k = 1 <-> 1 = 1 ) ) |
348 |
|
fveq2 |
|- ( k = 1 -> ( d ` k ) = ( d ` 1 ) ) |
349 |
|
fvoveq1 |
|- ( k = 1 -> ( d ` ( k - 1 ) ) = ( d ` ( 1 - 1 ) ) ) |
350 |
348 349
|
oveq12d |
|- ( k = 1 -> ( ( d ` k ) - ( d ` ( k - 1 ) ) ) = ( ( d ` 1 ) - ( d ` ( 1 - 1 ) ) ) ) |
351 |
347 350
|
ifbieq2d |
|- ( k = 1 -> if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) = if ( 1 = 1 , ( d ` 1 ) , ( ( d ` 1 ) - ( d ` ( 1 - 1 ) ) ) ) ) |
352 |
351
|
fsum1 |
|- ( ( 1 e. ZZ /\ if ( 1 = 1 , ( d ` 1 ) , ( ( d ` 1 ) - ( d ` ( 1 - 1 ) ) ) ) e. CC ) -> sum_ k e. ( 1 ... 1 ) if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) = if ( 1 = 1 , ( d ` 1 ) , ( ( d ` 1 ) - ( d ` ( 1 - 1 ) ) ) ) ) |
353 |
342 346 352
|
syl2anc |
|- ( ( ph /\ d e. B ) -> sum_ k e. ( 1 ... 1 ) if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) = if ( 1 = 1 , ( d ` 1 ) , ( ( d ` 1 ) - ( d ` ( 1 - 1 ) ) ) ) ) |
354 |
353 344
|
eqtrd |
|- ( ( ph /\ d e. B ) -> sum_ k e. ( 1 ... 1 ) if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) = ( d ` 1 ) ) |
355 |
354
|
adantr |
|- ( ( ( ph /\ d e. B ) /\ 1 = K ) -> sum_ k e. ( 1 ... 1 ) if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) = ( d ` 1 ) ) |
356 |
|
fveq2 |
|- ( 1 = K -> ( d ` 1 ) = ( d ` K ) ) |
357 |
356
|
adantl |
|- ( ( ( ph /\ d e. B ) /\ 1 = K ) -> ( d ` 1 ) = ( d ` K ) ) |
358 |
341 355 357
|
3eqtrd |
|- ( ( ( ph /\ d e. B ) /\ 1 = K ) -> sum_ k e. ( 1 ... K ) if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) = ( d ` K ) ) |
359 |
2
|
3ad2ant1 |
|- ( ( ph /\ d e. B /\ 1 < K ) -> K e. NN ) |
360 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
361 |
360
|
a1i |
|- ( ( ph /\ d e. B /\ 1 < K ) -> NN = ( ZZ>= ` 1 ) ) |
362 |
359 361
|
eleqtrd |
|- ( ( ph /\ d e. B /\ 1 < K ) -> K e. ( ZZ>= ` 1 ) ) |
363 |
335
|
3adantl3 |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ k e. ( 1 ... K ) ) -> if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) e. CC ) |
364 |
|
iftrue |
|- ( k = 1 -> if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) = ( d ` 1 ) ) |
365 |
362 363 364
|
fsum1p |
|- ( ( ph /\ d e. B /\ 1 < K ) -> sum_ k e. ( 1 ... K ) if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) = ( ( d ` 1 ) + sum_ k e. ( ( 1 + 1 ) ... K ) if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) ) ) |
366 |
|
1red |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ k e. ( ( 1 + 1 ) ... K ) ) -> 1 e. RR ) |
367 |
|
elfzle1 |
|- ( k e. ( ( 1 + 1 ) ... K ) -> ( 1 + 1 ) <_ k ) |
368 |
367
|
adantl |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ k e. ( ( 1 + 1 ) ... K ) ) -> ( 1 + 1 ) <_ k ) |
369 |
|
1zzd |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ k e. ( ( 1 + 1 ) ... K ) ) -> 1 e. ZZ ) |
370 |
|
elfzelz |
|- ( k e. ( ( 1 + 1 ) ... K ) -> k e. ZZ ) |
371 |
370
|
adantl |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ k e. ( ( 1 + 1 ) ... K ) ) -> k e. ZZ ) |
372 |
369 371
|
zltp1led |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ k e. ( ( 1 + 1 ) ... K ) ) -> ( 1 < k <-> ( 1 + 1 ) <_ k ) ) |
373 |
368 372
|
mpbird |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ k e. ( ( 1 + 1 ) ... K ) ) -> 1 < k ) |
374 |
366 373
|
ltned |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ k e. ( ( 1 + 1 ) ... K ) ) -> 1 =/= k ) |
375 |
374
|
necomd |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ k e. ( ( 1 + 1 ) ... K ) ) -> k =/= 1 ) |
376 |
375
|
neneqd |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ k e. ( ( 1 + 1 ) ... K ) ) -> -. k = 1 ) |
377 |
376
|
iffalsed |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ k e. ( ( 1 + 1 ) ... K ) ) -> if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) = ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) |
378 |
377
|
sumeq2dv |
|- ( ( ph /\ d e. B /\ 1 < K ) -> sum_ k e. ( ( 1 + 1 ) ... K ) if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) = sum_ k e. ( ( 1 + 1 ) ... K ) ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) |
379 |
378
|
oveq2d |
|- ( ( ph /\ d e. B /\ 1 < K ) -> ( ( d ` 1 ) + sum_ k e. ( ( 1 + 1 ) ... K ) if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) ) = ( ( d ` 1 ) + sum_ k e. ( ( 1 + 1 ) ... K ) ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) ) |
380 |
257
|
3adant3 |
|- ( ( ph /\ d e. B /\ 1 < K ) -> K e. CC ) |
381 |
|
1cnd |
|- ( ( ph /\ d e. B /\ 1 < K ) -> 1 e. CC ) |
382 |
380 381
|
npcand |
|- ( ( ph /\ d e. B /\ 1 < K ) -> ( ( K - 1 ) + 1 ) = K ) |
383 |
382
|
eqcomd |
|- ( ( ph /\ d e. B /\ 1 < K ) -> K = ( ( K - 1 ) + 1 ) ) |
384 |
383
|
oveq2d |
|- ( ( ph /\ d e. B /\ 1 < K ) -> ( ( 1 + 1 ) ... K ) = ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ) |
385 |
384
|
sumeq1d |
|- ( ( ph /\ d e. B /\ 1 < K ) -> sum_ k e. ( ( 1 + 1 ) ... K ) ( ( d ` k ) - ( d ` ( k - 1 ) ) ) = sum_ k e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) |
386 |
385
|
oveq2d |
|- ( ( ph /\ d e. B /\ 1 < K ) -> ( ( d ` 1 ) + sum_ k e. ( ( 1 + 1 ) ... K ) ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) = ( ( d ` 1 ) + sum_ k e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) ) |
387 |
|
elfzelz |
|- ( k e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) -> k e. ZZ ) |
388 |
387
|
adantl |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ k e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ) -> k e. ZZ ) |
389 |
388
|
zcnd |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ k e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ) -> k e. CC ) |
390 |
|
1cnd |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ k e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ) -> 1 e. CC ) |
391 |
389 390
|
npcand |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ k e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ) -> ( ( k - 1 ) + 1 ) = k ) |
392 |
391
|
eqcomd |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ k e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ) -> k = ( ( k - 1 ) + 1 ) ) |
393 |
392
|
fveq2d |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ k e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ) -> ( d ` k ) = ( d ` ( ( k - 1 ) + 1 ) ) ) |
394 |
393
|
oveq1d |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ k e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ) -> ( ( d ` k ) - ( d ` ( k - 1 ) ) ) = ( ( d ` ( ( k - 1 ) + 1 ) ) - ( d ` ( k - 1 ) ) ) ) |
395 |
394
|
sumeq2dv |
|- ( ( ph /\ d e. B /\ 1 < K ) -> sum_ k e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ( ( d ` k ) - ( d ` ( k - 1 ) ) ) = sum_ k e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ( ( d ` ( ( k - 1 ) + 1 ) ) - ( d ` ( k - 1 ) ) ) ) |
396 |
395
|
oveq2d |
|- ( ( ph /\ d e. B /\ 1 < K ) -> ( ( d ` 1 ) + sum_ k e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) = ( ( d ` 1 ) + sum_ k e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ( ( d ` ( ( k - 1 ) + 1 ) ) - ( d ` ( k - 1 ) ) ) ) ) |
397 |
58
|
3adant3 |
|- ( ( ph /\ d e. B /\ 1 < K ) -> 1 e. ZZ ) |
398 |
61
|
3adant3 |
|- ( ( ph /\ d e. B /\ 1 < K ) -> K e. ZZ ) |
399 |
398 397
|
zsubcld |
|- ( ( ph /\ d e. B /\ 1 < K ) -> ( K - 1 ) e. ZZ ) |
400 |
56
|
3adant3 |
|- ( ( ph /\ d e. B /\ 1 < K ) -> d : ( 1 ... K ) --> ( 1 ... ( N + K ) ) ) |
401 |
400
|
adantr |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> d : ( 1 ... K ) --> ( 1 ... ( N + K ) ) ) |
402 |
|
1zzd |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> 1 e. ZZ ) |
403 |
398
|
adantr |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> K e. ZZ ) |
404 |
|
elfznn |
|- ( s e. ( 1 ... ( K - 1 ) ) -> s e. NN ) |
405 |
404
|
adantl |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> s e. NN ) |
406 |
405
|
nnzd |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> s e. ZZ ) |
407 |
406
|
peano2zd |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> ( s + 1 ) e. ZZ ) |
408 |
|
1red |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> 1 e. RR ) |
409 |
405
|
nnred |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> s e. RR ) |
410 |
407
|
zred |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> ( s + 1 ) e. RR ) |
411 |
405
|
nnge1d |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> 1 <_ s ) |
412 |
409
|
lep1d |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> s <_ ( s + 1 ) ) |
413 |
408 409 410 411 412
|
letrd |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> 1 <_ ( s + 1 ) ) |
414 |
|
elfzle2 |
|- ( s e. ( 1 ... ( K - 1 ) ) -> s <_ ( K - 1 ) ) |
415 |
414
|
adantl |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> s <_ ( K - 1 ) ) |
416 |
403
|
zred |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> K e. RR ) |
417 |
|
leaddsub |
|- ( ( s e. RR /\ 1 e. RR /\ K e. RR ) -> ( ( s + 1 ) <_ K <-> s <_ ( K - 1 ) ) ) |
418 |
409 408 416 417
|
syl3anc |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> ( ( s + 1 ) <_ K <-> s <_ ( K - 1 ) ) ) |
419 |
415 418
|
mpbird |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> ( s + 1 ) <_ K ) |
420 |
402 403 407 413 419
|
elfzd |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> ( s + 1 ) e. ( 1 ... K ) ) |
421 |
401 420
|
ffvelrnd |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> ( d ` ( s + 1 ) ) e. ( 1 ... ( N + K ) ) ) |
422 |
|
elfznn |
|- ( ( d ` ( s + 1 ) ) e. ( 1 ... ( N + K ) ) -> ( d ` ( s + 1 ) ) e. NN ) |
423 |
421 422
|
syl |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> ( d ` ( s + 1 ) ) e. NN ) |
424 |
423
|
nnzd |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> ( d ` ( s + 1 ) ) e. ZZ ) |
425 |
416 408
|
resubcld |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> ( K - 1 ) e. RR ) |
426 |
416
|
lem1d |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> ( K - 1 ) <_ K ) |
427 |
409 425 416 415 426
|
letrd |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> s <_ K ) |
428 |
402 403 406 411 427
|
elfzd |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> s e. ( 1 ... K ) ) |
429 |
401
|
ffvelrnda |
|- ( ( ( ( ph /\ d e. B /\ 1 < K ) /\ s e. ( 1 ... ( K - 1 ) ) ) /\ s e. ( 1 ... K ) ) -> ( d ` s ) e. ( 1 ... ( N + K ) ) ) |
430 |
428 429
|
mpdan |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> ( d ` s ) e. ( 1 ... ( N + K ) ) ) |
431 |
|
elfznn |
|- ( ( d ` s ) e. ( 1 ... ( N + K ) ) -> ( d ` s ) e. NN ) |
432 |
430 431
|
syl |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> ( d ` s ) e. NN ) |
433 |
432
|
nnzd |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> ( d ` s ) e. ZZ ) |
434 |
424 433
|
zsubcld |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> ( ( d ` ( s + 1 ) ) - ( d ` s ) ) e. ZZ ) |
435 |
434
|
zcnd |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> ( ( d ` ( s + 1 ) ) - ( d ` s ) ) e. CC ) |
436 |
|
fvoveq1 |
|- ( s = ( k - 1 ) -> ( d ` ( s + 1 ) ) = ( d ` ( ( k - 1 ) + 1 ) ) ) |
437 |
|
fveq2 |
|- ( s = ( k - 1 ) -> ( d ` s ) = ( d ` ( k - 1 ) ) ) |
438 |
436 437
|
oveq12d |
|- ( s = ( k - 1 ) -> ( ( d ` ( s + 1 ) ) - ( d ` s ) ) = ( ( d ` ( ( k - 1 ) + 1 ) ) - ( d ` ( k - 1 ) ) ) ) |
439 |
397 397 399 435 438
|
fsumshft |
|- ( ( ph /\ d e. B /\ 1 < K ) -> sum_ s e. ( 1 ... ( K - 1 ) ) ( ( d ` ( s + 1 ) ) - ( d ` s ) ) = sum_ k e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ( ( d ` ( ( k - 1 ) + 1 ) ) - ( d ` ( k - 1 ) ) ) ) |
440 |
439
|
eqcomd |
|- ( ( ph /\ d e. B /\ 1 < K ) -> sum_ k e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ( ( d ` ( ( k - 1 ) + 1 ) ) - ( d ` ( k - 1 ) ) ) = sum_ s e. ( 1 ... ( K - 1 ) ) ( ( d ` ( s + 1 ) ) - ( d ` s ) ) ) |
441 |
440
|
oveq2d |
|- ( ( ph /\ d e. B /\ 1 < K ) -> ( ( d ` 1 ) + sum_ k e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ( ( d ` ( ( k - 1 ) + 1 ) ) - ( d ` ( k - 1 ) ) ) ) = ( ( d ` 1 ) + sum_ s e. ( 1 ... ( K - 1 ) ) ( ( d ` ( s + 1 ) ) - ( d ` s ) ) ) ) |
442 |
|
fveq2 |
|- ( o = s -> ( d ` o ) = ( d ` s ) ) |
443 |
|
fveq2 |
|- ( o = ( s + 1 ) -> ( d ` o ) = ( d ` ( s + 1 ) ) ) |
444 |
|
fveq2 |
|- ( o = 1 -> ( d ` o ) = ( d ` 1 ) ) |
445 |
|
fveq2 |
|- ( o = ( ( K - 1 ) + 1 ) -> ( d ` o ) = ( d ` ( ( K - 1 ) + 1 ) ) ) |
446 |
382 362
|
eqeltrd |
|- ( ( ph /\ d e. B /\ 1 < K ) -> ( ( K - 1 ) + 1 ) e. ( ZZ>= ` 1 ) ) |
447 |
56
|
adantr |
|- ( ( ( ph /\ d e. B ) /\ 1 < K ) -> d : ( 1 ... K ) --> ( 1 ... ( N + K ) ) ) |
448 |
447
|
3impa |
|- ( ( ph /\ d e. B /\ 1 < K ) -> d : ( 1 ... K ) --> ( 1 ... ( N + K ) ) ) |
449 |
448
|
ffvelrnda |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ o e. ( 1 ... K ) ) -> ( d ` o ) e. ( 1 ... ( N + K ) ) ) |
450 |
449
|
ex |
|- ( ( ph /\ d e. B /\ 1 < K ) -> ( o e. ( 1 ... K ) -> ( d ` o ) e. ( 1 ... ( N + K ) ) ) ) |
451 |
382
|
oveq2d |
|- ( ( ph /\ d e. B /\ 1 < K ) -> ( 1 ... ( ( K - 1 ) + 1 ) ) = ( 1 ... K ) ) |
452 |
451
|
eleq2d |
|- ( ( ph /\ d e. B /\ 1 < K ) -> ( o e. ( 1 ... ( ( K - 1 ) + 1 ) ) <-> o e. ( 1 ... K ) ) ) |
453 |
452
|
imbi1d |
|- ( ( ph /\ d e. B /\ 1 < K ) -> ( ( o e. ( 1 ... ( ( K - 1 ) + 1 ) ) -> ( d ` o ) e. ( 1 ... ( N + K ) ) ) <-> ( o e. ( 1 ... K ) -> ( d ` o ) e. ( 1 ... ( N + K ) ) ) ) ) |
454 |
450 453
|
mpbird |
|- ( ( ph /\ d e. B /\ 1 < K ) -> ( o e. ( 1 ... ( ( K - 1 ) + 1 ) ) -> ( d ` o ) e. ( 1 ... ( N + K ) ) ) ) |
455 |
454
|
imp |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ o e. ( 1 ... ( ( K - 1 ) + 1 ) ) ) -> ( d ` o ) e. ( 1 ... ( N + K ) ) ) |
456 |
|
elfznn |
|- ( ( d ` o ) e. ( 1 ... ( N + K ) ) -> ( d ` o ) e. NN ) |
457 |
455 456
|
syl |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ o e. ( 1 ... ( ( K - 1 ) + 1 ) ) ) -> ( d ` o ) e. NN ) |
458 |
457
|
nncnd |
|- ( ( ( ph /\ d e. B /\ 1 < K ) /\ o e. ( 1 ... ( ( K - 1 ) + 1 ) ) ) -> ( d ` o ) e. CC ) |
459 |
442 443 444 445 399 446 458
|
telfsum2 |
|- ( ( ph /\ d e. B /\ 1 < K ) -> sum_ s e. ( 1 ... ( K - 1 ) ) ( ( d ` ( s + 1 ) ) - ( d ` s ) ) = ( ( d ` ( ( K - 1 ) + 1 ) ) - ( d ` 1 ) ) ) |
460 |
459
|
oveq2d |
|- ( ( ph /\ d e. B /\ 1 < K ) -> ( ( d ` 1 ) + sum_ s e. ( 1 ... ( K - 1 ) ) ( ( d ` ( s + 1 ) ) - ( d ` s ) ) ) = ( ( d ` 1 ) + ( ( d ` ( ( K - 1 ) + 1 ) ) - ( d ` 1 ) ) ) ) |
461 |
382
|
fveq2d |
|- ( ( ph /\ d e. B /\ 1 < K ) -> ( d ` ( ( K - 1 ) + 1 ) ) = ( d ` K ) ) |
462 |
461
|
oveq1d |
|- ( ( ph /\ d e. B /\ 1 < K ) -> ( ( d ` ( ( K - 1 ) + 1 ) ) - ( d ` 1 ) ) = ( ( d ` K ) - ( d ` 1 ) ) ) |
463 |
462
|
oveq2d |
|- ( ( ph /\ d e. B /\ 1 < K ) -> ( ( d ` 1 ) + ( ( d ` ( ( K - 1 ) + 1 ) ) - ( d ` 1 ) ) ) = ( ( d ` 1 ) + ( ( d ` K ) - ( d ` 1 ) ) ) ) |
464 |
345
|
3adant3 |
|- ( ( ph /\ d e. B /\ 1 < K ) -> ( d ` 1 ) e. CC ) |
465 |
68 73
|
syl |
|- ( ( ph /\ d e. B ) -> ( d ` K ) e. NN ) |
466 |
465
|
nncnd |
|- ( ( ph /\ d e. B ) -> ( d ` K ) e. CC ) |
467 |
466
|
3adant3 |
|- ( ( ph /\ d e. B /\ 1 < K ) -> ( d ` K ) e. CC ) |
468 |
464 467
|
pncan3d |
|- ( ( ph /\ d e. B /\ 1 < K ) -> ( ( d ` 1 ) + ( ( d ` K ) - ( d ` 1 ) ) ) = ( d ` K ) ) |
469 |
|
eqidd |
|- ( ( ph /\ d e. B /\ 1 < K ) -> ( d ` K ) = ( d ` K ) ) |
470 |
468 469
|
eqtrd |
|- ( ( ph /\ d e. B /\ 1 < K ) -> ( ( d ` 1 ) + ( ( d ` K ) - ( d ` 1 ) ) ) = ( d ` K ) ) |
471 |
463 470
|
eqtrd |
|- ( ( ph /\ d e. B /\ 1 < K ) -> ( ( d ` 1 ) + ( ( d ` ( ( K - 1 ) + 1 ) ) - ( d ` 1 ) ) ) = ( d ` K ) ) |
472 |
460 471
|
eqtrd |
|- ( ( ph /\ d e. B /\ 1 < K ) -> ( ( d ` 1 ) + sum_ s e. ( 1 ... ( K - 1 ) ) ( ( d ` ( s + 1 ) ) - ( d ` s ) ) ) = ( d ` K ) ) |
473 |
441 472
|
eqtrd |
|- ( ( ph /\ d e. B /\ 1 < K ) -> ( ( d ` 1 ) + sum_ k e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ( ( d ` ( ( k - 1 ) + 1 ) ) - ( d ` ( k - 1 ) ) ) ) = ( d ` K ) ) |
474 |
396 473
|
eqtrd |
|- ( ( ph /\ d e. B /\ 1 < K ) -> ( ( d ` 1 ) + sum_ k e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) = ( d ` K ) ) |
475 |
386 474
|
eqtrd |
|- ( ( ph /\ d e. B /\ 1 < K ) -> ( ( d ` 1 ) + sum_ k e. ( ( 1 + 1 ) ... K ) ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) = ( d ` K ) ) |
476 |
379 475
|
eqtrd |
|- ( ( ph /\ d e. B /\ 1 < K ) -> ( ( d ` 1 ) + sum_ k e. ( ( 1 + 1 ) ... K ) if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) ) = ( d ` K ) ) |
477 |
365 476
|
eqtrd |
|- ( ( ph /\ d e. B /\ 1 < K ) -> sum_ k e. ( 1 ... K ) if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) = ( d ` K ) ) |
478 |
477
|
3expa |
|- ( ( ( ph /\ d e. B ) /\ 1 < K ) -> sum_ k e. ( 1 ... K ) if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) = ( d ` K ) ) |
479 |
137
|
adantr |
|- ( ( ph /\ d e. B ) -> 1 e. RR ) |
480 |
64
|
adantr |
|- ( ( ph /\ d e. B ) -> K e. RR ) |
481 |
479 480
|
leloed |
|- ( ( ph /\ d e. B ) -> ( 1 <_ K <-> ( 1 < K \/ 1 = K ) ) ) |
482 |
63 481
|
mpbid |
|- ( ( ph /\ d e. B ) -> ( 1 < K \/ 1 = K ) ) |
483 |
482
|
orcomd |
|- ( ( ph /\ d e. B ) -> ( 1 = K \/ 1 < K ) ) |
484 |
358 478 483
|
mpjaodan |
|- ( ( ph /\ d e. B ) -> sum_ k e. ( 1 ... K ) if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) = ( d ` K ) ) |
485 |
|
fsumconst |
|- ( ( ( 1 ... K ) e. Fin /\ 1 e. CC ) -> sum_ k e. ( 1 ... K ) 1 = ( ( # ` ( 1 ... K ) ) x. 1 ) ) |
486 |
291 258 485
|
syl2anc |
|- ( ( ph /\ d e. B ) -> sum_ k e. ( 1 ... K ) 1 = ( ( # ` ( 1 ... K ) ) x. 1 ) ) |
487 |
59
|
adantr |
|- ( ( ph /\ d e. B ) -> K e. NN0 ) |
488 |
|
hashfz1 |
|- ( K e. NN0 -> ( # ` ( 1 ... K ) ) = K ) |
489 |
487 488
|
syl |
|- ( ( ph /\ d e. B ) -> ( # ` ( 1 ... K ) ) = K ) |
490 |
489
|
oveq1d |
|- ( ( ph /\ d e. B ) -> ( ( # ` ( 1 ... K ) ) x. 1 ) = ( K x. 1 ) ) |
491 |
257
|
mulid1d |
|- ( ( ph /\ d e. B ) -> ( K x. 1 ) = K ) |
492 |
490 491
|
eqtrd |
|- ( ( ph /\ d e. B ) -> ( ( # ` ( 1 ... K ) ) x. 1 ) = K ) |
493 |
486 492
|
eqtrd |
|- ( ( ph /\ d e. B ) -> sum_ k e. ( 1 ... K ) 1 = K ) |
494 |
484 493
|
oveq12d |
|- ( ( ph /\ d e. B ) -> ( sum_ k e. ( 1 ... K ) if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) - sum_ k e. ( 1 ... K ) 1 ) = ( ( d ` K ) - K ) ) |
495 |
337 494
|
eqtrd |
|- ( ( ph /\ d e. B ) -> sum_ k e. ( 1 ... K ) ( if ( k = 1 , ( d ` 1 ) , ( ( d ` k ) - ( d ` ( k - 1 ) ) ) ) - 1 ) = ( ( d ` K ) - K ) ) |
496 |
290 495
|
eqtrd |
|- ( ( ph /\ d e. B ) -> sum_ k e. ( 1 ... K ) if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) = ( ( d ` K ) - K ) ) |
497 |
466 257
|
subcld |
|- ( ( ph /\ d e. B ) -> ( ( d ` K ) - K ) e. CC ) |
498 |
497
|
addid1d |
|- ( ( ph /\ d e. B ) -> ( ( ( d ` K ) - K ) + 0 ) = ( ( d ` K ) - K ) ) |
499 |
498
|
eqcomd |
|- ( ( ph /\ d e. B ) -> ( ( d ` K ) - K ) = ( ( ( d ` K ) - K ) + 0 ) ) |
500 |
|
0cnd |
|- ( ( ph /\ d e. B ) -> 0 e. CC ) |
501 |
497 500
|
addcomd |
|- ( ( ph /\ d e. B ) -> ( ( ( d ` K ) - K ) + 0 ) = ( 0 + ( ( d ` K ) - K ) ) ) |
502 |
499 501
|
eqtrd |
|- ( ( ph /\ d e. B ) -> ( ( d ` K ) - K ) = ( 0 + ( ( d ` K ) - K ) ) ) |
503 |
496 502
|
eqtrd |
|- ( ( ph /\ d e. B ) -> sum_ k e. ( 1 ... K ) if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) = ( 0 + ( ( d ` K ) - K ) ) ) |
504 |
500 257 466
|
subsub2d |
|- ( ( ph /\ d e. B ) -> ( 0 - ( K - ( d ` K ) ) ) = ( 0 + ( ( d ` K ) - K ) ) ) |
505 |
504
|
eqcomd |
|- ( ( ph /\ d e. B ) -> ( 0 + ( ( d ` K ) - K ) ) = ( 0 - ( K - ( d ` K ) ) ) ) |
506 |
503 505
|
eqtrd |
|- ( ( ph /\ d e. B ) -> sum_ k e. ( 1 ... K ) if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) = ( 0 - ( K - ( d ` K ) ) ) ) |
507 |
1
|
nn0cnd |
|- ( ph -> N e. CC ) |
508 |
507
|
adantr |
|- ( ( ph /\ d e. B ) -> N e. CC ) |
509 |
508
|
subidd |
|- ( ( ph /\ d e. B ) -> ( N - N ) = 0 ) |
510 |
509
|
eqcomd |
|- ( ( ph /\ d e. B ) -> 0 = ( N - N ) ) |
511 |
510
|
oveq1d |
|- ( ( ph /\ d e. B ) -> ( 0 - ( K - ( d ` K ) ) ) = ( ( N - N ) - ( K - ( d ` K ) ) ) ) |
512 |
506 511
|
eqtrd |
|- ( ( ph /\ d e. B ) -> sum_ k e. ( 1 ... K ) if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) = ( ( N - N ) - ( K - ( d ` K ) ) ) ) |
513 |
257 466
|
subcld |
|- ( ( ph /\ d e. B ) -> ( K - ( d ` K ) ) e. CC ) |
514 |
508 508 513
|
subsub4d |
|- ( ( ph /\ d e. B ) -> ( ( N - N ) - ( K - ( d ` K ) ) ) = ( N - ( N + ( K - ( d ` K ) ) ) ) ) |
515 |
512 514
|
eqtrd |
|- ( ( ph /\ d e. B ) -> sum_ k e. ( 1 ... K ) if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) = ( N - ( N + ( K - ( d ` K ) ) ) ) ) |
516 |
508 257 466
|
addsubassd |
|- ( ( ph /\ d e. B ) -> ( ( N + K ) - ( d ` K ) ) = ( N + ( K - ( d ` K ) ) ) ) |
517 |
516
|
eqcomd |
|- ( ( ph /\ d e. B ) -> ( N + ( K - ( d ` K ) ) ) = ( ( N + K ) - ( d ` K ) ) ) |
518 |
517
|
oveq2d |
|- ( ( ph /\ d e. B ) -> ( N - ( N + ( K - ( d ` K ) ) ) ) = ( N - ( ( N + K ) - ( d ` K ) ) ) ) |
519 |
515 518
|
eqtrd |
|- ( ( ph /\ d e. B ) -> sum_ k e. ( 1 ... K ) if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) = ( N - ( ( N + K ) - ( d ` K ) ) ) ) |
520 |
278 519
|
eqtrd |
|- ( ( ph /\ d e. B ) -> sum_ k e. ( 1 ... K ) if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) = ( N - ( ( N + K ) - ( d ` K ) ) ) ) |
521 |
|
eleq1 |
|- ( ( ( d ` 1 ) - 1 ) = if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) -> ( ( ( d ` 1 ) - 1 ) e. ZZ <-> if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) e. ZZ ) ) |
522 |
|
eleq1 |
|- ( ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) = if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) -> ( ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) e. ZZ <-> if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) e. ZZ ) ) |
523 |
|
1zzd |
|- ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) -> 1 e. ZZ ) |
524 |
298 523
|
zsubcld |
|- ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) -> ( ( d ` 1 ) - 1 ) e. ZZ ) |
525 |
524
|
adantr |
|- ( ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) /\ k = 1 ) -> ( ( d ` 1 ) - 1 ) e. ZZ ) |
526 |
523
|
adantr |
|- ( ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) /\ -. k = 1 ) -> 1 e. ZZ ) |
527 |
332 526
|
zsubcld |
|- ( ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) /\ -. k = 1 ) -> ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) e. ZZ ) |
528 |
521 522 525 527
|
ifbothda |
|- ( ( ph /\ d e. B /\ k e. ( 1 ... K ) ) -> if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) e. ZZ ) |
529 |
528
|
3expa |
|- ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... K ) ) -> if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) e. ZZ ) |
530 |
277
|
eleq1d |
|- ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... K ) ) -> ( if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) e. ZZ <-> if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) e. ZZ ) ) |
531 |
529 530
|
mpbird |
|- ( ( ( ph /\ d e. B ) /\ k e. ( 1 ... K ) ) -> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) e. ZZ ) |
532 |
291 531
|
fsumzcl |
|- ( ( ph /\ d e. B ) -> sum_ k e. ( 1 ... K ) if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) e. ZZ ) |
533 |
532
|
zcnd |
|- ( ( ph /\ d e. B ) -> sum_ k e. ( 1 ... K ) if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) e. CC ) |
534 |
508 257
|
addcld |
|- ( ( ph /\ d e. B ) -> ( N + K ) e. CC ) |
535 |
534 466
|
subcld |
|- ( ( ph /\ d e. B ) -> ( ( N + K ) - ( d ` K ) ) e. CC ) |
536 |
533 535 508
|
addlsub |
|- ( ( ph /\ d e. B ) -> ( ( sum_ k e. ( 1 ... K ) if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) + ( ( N + K ) - ( d ` K ) ) ) = N <-> sum_ k e. ( 1 ... K ) if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) = ( N - ( ( N + K ) - ( d ` K ) ) ) ) ) |
537 |
520 536
|
mpbird |
|- ( ( ph /\ d e. B ) -> ( sum_ k e. ( 1 ... K ) if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) + ( ( N + K ) - ( d ` K ) ) ) = N ) |
538 |
|
eqidd |
|- ( ( ph /\ d e. B ) -> N = N ) |
539 |
537 538
|
eqtrd |
|- ( ( ph /\ d e. B ) -> ( sum_ k e. ( 1 ... K ) if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) + ( ( N + K ) - ( d ` K ) ) ) = N ) |
540 |
264 539
|
eqtrd |
|- ( ( ph /\ d e. B ) -> ( sum_ k e. ( 1 ... ( ( K + 1 ) - 1 ) ) if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) + if ( ( K + 1 ) = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( ( K + 1 ) = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` ( K + 1 ) ) - ( d ` ( ( K + 1 ) - 1 ) ) ) - 1 ) ) ) ) = N ) |
541 |
256 540
|
eqtrd |
|- ( ( ph /\ d e. B ) -> sum_ k e. ( 1 ... ( K + 1 ) ) if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) = N ) |
542 |
233 541
|
eqtrd |
|- ( ( ph /\ d e. B ) -> sum_ i e. ( 1 ... ( K + 1 ) ) if ( i = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( i = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` i ) - ( d ` ( i - 1 ) ) ) - 1 ) ) ) = N ) |
543 |
219 542
|
eqtrd |
|- ( ( ph /\ d e. B ) -> sum_ i e. ( 1 ... ( K + 1 ) ) ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ` i ) = N ) |
544 |
201 543
|
jca |
|- ( ( ph /\ d e. B ) -> ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ` i ) = N ) ) |
545 |
|
ovex |
|- ( 1 ... ( K + 1 ) ) e. _V |
546 |
545
|
mptex |
|- ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) e. _V |
547 |
|
feq1 |
|- ( g = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) -> ( g : ( 1 ... ( K + 1 ) ) --> NN0 <-> ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) : ( 1 ... ( K + 1 ) ) --> NN0 ) ) |
548 |
|
simpl |
|- ( ( g = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) /\ i e. ( 1 ... ( K + 1 ) ) ) -> g = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ) |
549 |
548
|
fveq1d |
|- ( ( g = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) /\ i e. ( 1 ... ( K + 1 ) ) ) -> ( g ` i ) = ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ` i ) ) |
550 |
549
|
sumeq2dv |
|- ( g = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) -> sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = sum_ i e. ( 1 ... ( K + 1 ) ) ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ` i ) ) |
551 |
550
|
eqeq1d |
|- ( g = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) -> ( sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N <-> sum_ i e. ( 1 ... ( K + 1 ) ) ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ` i ) = N ) ) |
552 |
547 551
|
anbi12d |
|- ( g = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) -> ( ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) <-> ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ` i ) = N ) ) ) |
553 |
546 552
|
elab |
|- ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) e. { g | ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) } <-> ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ` i ) = N ) ) |
554 |
553
|
a1i |
|- ( ( ph /\ d e. B ) -> ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) e. { g | ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) } <-> ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ` i ) = N ) ) ) |
555 |
544 554
|
mpbird |
|- ( ( ph /\ d e. B ) -> ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) e. { g | ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) } ) |
556 |
5
|
a1i |
|- ( ( ph /\ d e. B ) -> A = { g | ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) } ) |
557 |
556
|
eqcomd |
|- ( ( ph /\ d e. B ) -> { g | ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) } = A ) |
558 |
555 557
|
eleqtrd |
|- ( ( ph /\ d e. B ) -> ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) e. A ) |
559 |
291
|
mptexd |
|- ( ( ph /\ d e. B ) -> ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ` l ) ) ) e. _V ) |
560 |
34 40 558 559
|
fvmptd |
|- ( ( ph /\ d e. B ) -> ( F ` ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ) = ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ` l ) ) ) ) |
561 |
|
eqidd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ) |
562 |
|
simpr |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ k = l ) -> k = l ) |
563 |
562
|
eqeq1d |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ k = l ) -> ( k = ( K + 1 ) <-> l = ( K + 1 ) ) ) |
564 |
562
|
eqeq1d |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ k = l ) -> ( k = 1 <-> l = 1 ) ) |
565 |
562
|
fveq2d |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ k = l ) -> ( d ` k ) = ( d ` l ) ) |
566 |
562
|
oveq1d |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ k = l ) -> ( k - 1 ) = ( l - 1 ) ) |
567 |
566
|
fveq2d |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ k = l ) -> ( d ` ( k - 1 ) ) = ( d ` ( l - 1 ) ) ) |
568 |
565 567
|
oveq12d |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ k = l ) -> ( ( d ` k ) - ( d ` ( k - 1 ) ) ) = ( ( d ` l ) - ( d ` ( l - 1 ) ) ) ) |
569 |
568
|
oveq1d |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ k = l ) -> ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) = ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) |
570 |
564 569
|
ifbieq2d |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ k = l ) -> if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) = if ( l = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) ) |
571 |
563 570
|
ifbieq2d |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ k = l ) -> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) = if ( l = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( l = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) ) ) |
572 |
|
1zzd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> 1 e. ZZ ) |
573 |
60
|
3ad2ant1 |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> K e. ZZ ) |
574 |
573
|
adantr |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> K e. ZZ ) |
575 |
574
|
peano2zd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> ( K + 1 ) e. ZZ ) |
576 |
|
elfzelz |
|- ( l e. ( 1 ... j ) -> l e. ZZ ) |
577 |
576
|
adantl |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> l e. ZZ ) |
578 |
|
elfzle1 |
|- ( l e. ( 1 ... j ) -> 1 <_ l ) |
579 |
578
|
adantl |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> 1 <_ l ) |
580 |
577
|
zred |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> l e. RR ) |
581 |
|
simp3 |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> j e. ( 1 ... K ) ) |
582 |
|
elfznn |
|- ( j e. ( 1 ... K ) -> j e. NN ) |
583 |
581 582
|
syl |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> j e. NN ) |
584 |
583
|
nnred |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> j e. RR ) |
585 |
584
|
adantr |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> j e. RR ) |
586 |
575
|
zred |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> ( K + 1 ) e. RR ) |
587 |
|
elfzle2 |
|- ( l e. ( 1 ... j ) -> l <_ j ) |
588 |
587
|
adantl |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> l <_ j ) |
589 |
64
|
3ad2ant1 |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> K e. RR ) |
590 |
|
1red |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> 1 e. RR ) |
591 |
589 590
|
readdcld |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( K + 1 ) e. RR ) |
592 |
|
elfzle2 |
|- ( j e. ( 1 ... K ) -> j <_ K ) |
593 |
581 592
|
syl |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> j <_ K ) |
594 |
589
|
lep1d |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> K <_ ( K + 1 ) ) |
595 |
584 589 591 593 594
|
letrd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> j <_ ( K + 1 ) ) |
596 |
595
|
adantr |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> j <_ ( K + 1 ) ) |
597 |
580 585 586 588 596
|
letrd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> l <_ ( K + 1 ) ) |
598 |
572 575 577 579 597
|
elfzd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> l e. ( 1 ... ( K + 1 ) ) ) |
599 |
|
ovexd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> ( ( N + K ) - ( d ` K ) ) e. _V ) |
600 |
|
ovexd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> ( ( d ` 1 ) - 1 ) e. _V ) |
601 |
|
ovexd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) e. _V ) |
602 |
600 601
|
ifcld |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> if ( l = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) e. _V ) |
603 |
599 602
|
ifcld |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> if ( l = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( l = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) ) e. _V ) |
604 |
561 571 598 603
|
fvmptd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ` l ) = if ( l = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( l = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) ) ) |
605 |
604
|
sumeq2dv |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> sum_ l e. ( 1 ... j ) ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ` l ) = sum_ l e. ( 1 ... j ) if ( l = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( l = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) ) ) |
606 |
605
|
oveq2d |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( j + sum_ l e. ( 1 ... j ) ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ` l ) ) = ( j + sum_ l e. ( 1 ... j ) if ( l = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( l = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) ) ) ) |
607 |
|
elfznn |
|- ( l e. ( 1 ... j ) -> l e. NN ) |
608 |
607
|
adantl |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> l e. NN ) |
609 |
608
|
nnred |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> l e. RR ) |
610 |
589
|
adantr |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> K e. RR ) |
611 |
|
1red |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> 1 e. RR ) |
612 |
610 611
|
readdcld |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> ( K + 1 ) e. RR ) |
613 |
583
|
adantr |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> j e. NN ) |
614 |
613
|
nnred |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> j e. RR ) |
615 |
593
|
adantr |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> j <_ K ) |
616 |
609 614 610 588 615
|
letrd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> l <_ K ) |
617 |
610
|
ltp1d |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> K < ( K + 1 ) ) |
618 |
609 610 612 616 617
|
lelttrd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> l < ( K + 1 ) ) |
619 |
609 618
|
ltned |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> l =/= ( K + 1 ) ) |
620 |
619
|
neneqd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> -. l = ( K + 1 ) ) |
621 |
620
|
iffalsed |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> if ( l = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( l = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) ) = if ( l = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) ) |
622 |
621
|
sumeq2dv |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> sum_ l e. ( 1 ... j ) if ( l = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( l = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) ) = sum_ l e. ( 1 ... j ) if ( l = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) ) |
623 |
622
|
oveq2d |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( j + sum_ l e. ( 1 ... j ) if ( l = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( l = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) ) ) = ( j + sum_ l e. ( 1 ... j ) if ( l = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) ) ) |
624 |
583
|
nnge1d |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> 1 <_ j ) |
625 |
57
|
3ad2ant1 |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> 1 e. ZZ ) |
626 |
583
|
nnzd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> j e. ZZ ) |
627 |
|
eluz |
|- ( ( 1 e. ZZ /\ j e. ZZ ) -> ( j e. ( ZZ>= ` 1 ) <-> 1 <_ j ) ) |
628 |
625 626 627
|
syl2anc |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( j e. ( ZZ>= ` 1 ) <-> 1 <_ j ) ) |
629 |
624 628
|
mpbird |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> j e. ( ZZ>= ` 1 ) ) |
630 |
|
eleq1 |
|- ( ( ( d ` 1 ) - 1 ) = if ( l = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) -> ( ( ( d ` 1 ) - 1 ) e. CC <-> if ( l = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) e. CC ) ) |
631 |
|
eleq1 |
|- ( ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) = if ( l = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) -> ( ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) e. CC <-> if ( l = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) e. CC ) ) |
632 |
56
|
3adant3 |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> d : ( 1 ... K ) --> ( 1 ... ( N + K ) ) ) |
633 |
|
simp1 |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ph ) |
634 |
633 62
|
syl |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> 1 <_ K ) |
635 |
633 60
|
syl |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> K e. ZZ ) |
636 |
|
eluz |
|- ( ( 1 e. ZZ /\ K e. ZZ ) -> ( K e. ( ZZ>= ` 1 ) <-> 1 <_ K ) ) |
637 |
625 635 636
|
syl2anc |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( K e. ( ZZ>= ` 1 ) <-> 1 <_ K ) ) |
638 |
634 637
|
mpbird |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> K e. ( ZZ>= ` 1 ) ) |
639 |
|
eluzfz1 |
|- ( K e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... K ) ) |
640 |
638 639
|
syl |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> 1 e. ( 1 ... K ) ) |
641 |
632 640
|
ffvelrnd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( d ` 1 ) e. ( 1 ... ( N + K ) ) ) |
642 |
641 90
|
syl |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( d ` 1 ) e. NN ) |
643 |
642
|
nnzd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( d ` 1 ) e. ZZ ) |
644 |
643 625
|
zsubcld |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( ( d ` 1 ) - 1 ) e. ZZ ) |
645 |
644
|
zcnd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( ( d ` 1 ) - 1 ) e. CC ) |
646 |
645
|
adantr |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> ( ( d ` 1 ) - 1 ) e. CC ) |
647 |
646
|
adantr |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ l = 1 ) -> ( ( d ` 1 ) - 1 ) e. CC ) |
648 |
632
|
adantr |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> d : ( 1 ... K ) --> ( 1 ... ( N + K ) ) ) |
649 |
635
|
adantr |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> K e. ZZ ) |
650 |
608
|
nnzd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> l e. ZZ ) |
651 |
608
|
nnge1d |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> 1 <_ l ) |
652 |
572 649 650 651 616
|
elfzd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> l e. ( 1 ... K ) ) |
653 |
648 652
|
ffvelrnd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> ( d ` l ) e. ( 1 ... ( N + K ) ) ) |
654 |
|
elfzelz |
|- ( ( d ` l ) e. ( 1 ... ( N + K ) ) -> ( d ` l ) e. ZZ ) |
655 |
653 654
|
syl |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> ( d ` l ) e. ZZ ) |
656 |
655
|
adantr |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ -. l = 1 ) -> ( d ` l ) e. ZZ ) |
657 |
648
|
adantr |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ -. l = 1 ) -> d : ( 1 ... K ) --> ( 1 ... ( N + K ) ) ) |
658 |
|
1zzd |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ -. l = 1 ) -> 1 e. ZZ ) |
659 |
649
|
adantr |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ -. l = 1 ) -> K e. ZZ ) |
660 |
650
|
adantr |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ -. l = 1 ) -> l e. ZZ ) |
661 |
660 658
|
zsubcld |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ -. l = 1 ) -> ( l - 1 ) e. ZZ ) |
662 |
|
neqne |
|- ( -. l = 1 -> l =/= 1 ) |
663 |
662
|
adantl |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ -. l = 1 ) -> l =/= 1 ) |
664 |
611
|
adantr |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ -. l = 1 ) -> 1 e. RR ) |
665 |
609
|
adantr |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ -. l = 1 ) -> l e. RR ) |
666 |
651
|
adantr |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ -. l = 1 ) -> 1 <_ l ) |
667 |
664 665 666
|
leltned |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ -. l = 1 ) -> ( 1 < l <-> l =/= 1 ) ) |
668 |
663 667
|
mpbird |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ -. l = 1 ) -> 1 < l ) |
669 |
658 660
|
zltlem1d |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ -. l = 1 ) -> ( 1 < l <-> 1 <_ ( l - 1 ) ) ) |
670 |
668 669
|
mpbid |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ -. l = 1 ) -> 1 <_ ( l - 1 ) ) |
671 |
661
|
zred |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ -. l = 1 ) -> ( l - 1 ) e. RR ) |
672 |
610
|
adantr |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ -. l = 1 ) -> K e. RR ) |
673 |
665
|
lem1d |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ -. l = 1 ) -> ( l - 1 ) <_ l ) |
674 |
616
|
adantr |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ -. l = 1 ) -> l <_ K ) |
675 |
671 665 672 673 674
|
letrd |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ -. l = 1 ) -> ( l - 1 ) <_ K ) |
676 |
658 659 661 670 675
|
elfzd |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ -. l = 1 ) -> ( l - 1 ) e. ( 1 ... K ) ) |
677 |
657 676
|
ffvelrnd |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ -. l = 1 ) -> ( d ` ( l - 1 ) ) e. ( 1 ... ( N + K ) ) ) |
678 |
|
elfzelz |
|- ( ( d ` ( l - 1 ) ) e. ( 1 ... ( N + K ) ) -> ( d ` ( l - 1 ) ) e. ZZ ) |
679 |
677 678
|
syl |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ -. l = 1 ) -> ( d ` ( l - 1 ) ) e. ZZ ) |
680 |
656 679
|
zsubcld |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ -. l = 1 ) -> ( ( d ` l ) - ( d ` ( l - 1 ) ) ) e. ZZ ) |
681 |
680 658
|
zsubcld |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ -. l = 1 ) -> ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) e. ZZ ) |
682 |
681
|
zcnd |
|- ( ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) /\ -. l = 1 ) -> ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) e. CC ) |
683 |
630 631 647 682
|
ifbothda |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... j ) ) -> if ( l = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) e. CC ) |
684 |
|
iftrue |
|- ( l = 1 -> if ( l = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) = ( ( d ` 1 ) - 1 ) ) |
685 |
629 683 684
|
fsum1p |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> sum_ l e. ( 1 ... j ) if ( l = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) = ( ( ( d ` 1 ) - 1 ) + sum_ l e. ( ( 1 + 1 ) ... j ) if ( l = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) ) ) |
686 |
685
|
oveq2d |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( j + sum_ l e. ( 1 ... j ) if ( l = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) ) = ( j + ( ( ( d ` 1 ) - 1 ) + sum_ l e. ( ( 1 + 1 ) ... j ) if ( l = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) ) ) ) |
687 |
633 137
|
syl |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> 1 e. RR ) |
688 |
687
|
adantr |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> 1 e. RR ) |
689 |
688 688
|
readdcld |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> ( 1 + 1 ) e. RR ) |
690 |
|
elfzelz |
|- ( l e. ( ( 1 + 1 ) ... j ) -> l e. ZZ ) |
691 |
690
|
adantl |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> l e. ZZ ) |
692 |
691
|
zred |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> l e. RR ) |
693 |
688
|
ltp1d |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> 1 < ( 1 + 1 ) ) |
694 |
|
elfzle1 |
|- ( l e. ( ( 1 + 1 ) ... j ) -> ( 1 + 1 ) <_ l ) |
695 |
694
|
adantl |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> ( 1 + 1 ) <_ l ) |
696 |
688 689 692 693 695
|
ltletrd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> 1 < l ) |
697 |
688 696
|
ltned |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> 1 =/= l ) |
698 |
697
|
necomd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> l =/= 1 ) |
699 |
698
|
neneqd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> -. l = 1 ) |
700 |
699
|
iffalsed |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> if ( l = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) = ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) |
701 |
700
|
sumeq2dv |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> sum_ l e. ( ( 1 + 1 ) ... j ) if ( l = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) = sum_ l e. ( ( 1 + 1 ) ... j ) ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) |
702 |
701
|
oveq2d |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( ( ( d ` 1 ) - 1 ) + sum_ l e. ( ( 1 + 1 ) ... j ) if ( l = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) ) = ( ( ( d ` 1 ) - 1 ) + sum_ l e. ( ( 1 + 1 ) ... j ) ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) ) |
703 |
702
|
oveq2d |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( j + ( ( ( d ` 1 ) - 1 ) + sum_ l e. ( ( 1 + 1 ) ... j ) if ( l = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) ) ) = ( j + ( ( ( d ` 1 ) - 1 ) + sum_ l e. ( ( 1 + 1 ) ... j ) ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) ) ) |
704 |
|
fzfid |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( ( 1 + 1 ) ... j ) e. Fin ) |
705 |
632
|
adantr |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> d : ( 1 ... K ) --> ( 1 ... ( N + K ) ) ) |
706 |
|
1zzd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> 1 e. ZZ ) |
707 |
635
|
adantr |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> K e. ZZ ) |
708 |
688 689 693
|
ltled |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> 1 <_ ( 1 + 1 ) ) |
709 |
688 689 692 708 695
|
letrd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> 1 <_ l ) |
710 |
584
|
adantr |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> j e. RR ) |
711 |
589
|
adantr |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> K e. RR ) |
712 |
|
elfzle2 |
|- ( l e. ( ( 1 + 1 ) ... j ) -> l <_ j ) |
713 |
712
|
adantl |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> l <_ j ) |
714 |
593
|
adantr |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> j <_ K ) |
715 |
692 710 711 713 714
|
letrd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> l <_ K ) |
716 |
706 707 691 709 715
|
elfzd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> l e. ( 1 ... K ) ) |
717 |
705 716
|
ffvelrnd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> ( d ` l ) e. ( 1 ... ( N + K ) ) ) |
718 |
717 654
|
syl |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> ( d ` l ) e. ZZ ) |
719 |
718
|
zcnd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> ( d ` l ) e. CC ) |
720 |
691 706
|
zsubcld |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> ( l - 1 ) e. ZZ ) |
721 |
|
leaddsub |
|- ( ( 1 e. RR /\ 1 e. RR /\ l e. RR ) -> ( ( 1 + 1 ) <_ l <-> 1 <_ ( l - 1 ) ) ) |
722 |
688 688 692 721
|
syl3anc |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> ( ( 1 + 1 ) <_ l <-> 1 <_ ( l - 1 ) ) ) |
723 |
695 722
|
mpbid |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> 1 <_ ( l - 1 ) ) |
724 |
692 688
|
resubcld |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> ( l - 1 ) e. RR ) |
725 |
692
|
lem1d |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> ( l - 1 ) <_ l ) |
726 |
724 692 711 725 715
|
letrd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> ( l - 1 ) <_ K ) |
727 |
706 707 720 723 726
|
elfzd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> ( l - 1 ) e. ( 1 ... K ) ) |
728 |
705 727
|
ffvelrnd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> ( d ` ( l - 1 ) ) e. ( 1 ... ( N + K ) ) ) |
729 |
678
|
zcnd |
|- ( ( d ` ( l - 1 ) ) e. ( 1 ... ( N + K ) ) -> ( d ` ( l - 1 ) ) e. CC ) |
730 |
728 729
|
syl |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> ( d ` ( l - 1 ) ) e. CC ) |
731 |
719 730
|
subcld |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> ( ( d ` l ) - ( d ` ( l - 1 ) ) ) e. CC ) |
732 |
|
1cnd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> 1 e. CC ) |
733 |
704 731 732
|
fsumsub |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> sum_ l e. ( ( 1 + 1 ) ... j ) ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) = ( sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - sum_ l e. ( ( 1 + 1 ) ... j ) 1 ) ) |
734 |
733
|
oveq2d |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( ( ( d ` 1 ) - 1 ) + sum_ l e. ( ( 1 + 1 ) ... j ) ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) = ( ( ( d ` 1 ) - 1 ) + ( sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - sum_ l e. ( ( 1 + 1 ) ... j ) 1 ) ) ) |
735 |
734
|
oveq2d |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( j + ( ( ( d ` 1 ) - 1 ) + sum_ l e. ( ( 1 + 1 ) ... j ) ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) ) = ( j + ( ( ( d ` 1 ) - 1 ) + ( sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - sum_ l e. ( ( 1 + 1 ) ... j ) 1 ) ) ) ) |
736 |
|
1cnd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> 1 e. CC ) |
737 |
|
fsumconst |
|- ( ( ( ( 1 + 1 ) ... j ) e. Fin /\ 1 e. CC ) -> sum_ l e. ( ( 1 + 1 ) ... j ) 1 = ( ( # ` ( ( 1 + 1 ) ... j ) ) x. 1 ) ) |
738 |
704 736 737
|
syl2anc |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> sum_ l e. ( ( 1 + 1 ) ... j ) 1 = ( ( # ` ( ( 1 + 1 ) ... j ) ) x. 1 ) ) |
739 |
|
hashfzp1 |
|- ( j e. ( ZZ>= ` 1 ) -> ( # ` ( ( 1 + 1 ) ... j ) ) = ( j - 1 ) ) |
740 |
629 739
|
syl |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( # ` ( ( 1 + 1 ) ... j ) ) = ( j - 1 ) ) |
741 |
740
|
oveq1d |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( ( # ` ( ( 1 + 1 ) ... j ) ) x. 1 ) = ( ( j - 1 ) x. 1 ) ) |
742 |
583
|
nncnd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> j e. CC ) |
743 |
742 736
|
subcld |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( j - 1 ) e. CC ) |
744 |
743
|
mulid1d |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( ( j - 1 ) x. 1 ) = ( j - 1 ) ) |
745 |
741 744
|
eqtrd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( ( # ` ( ( 1 + 1 ) ... j ) ) x. 1 ) = ( j - 1 ) ) |
746 |
738 745
|
eqtrd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> sum_ l e. ( ( 1 + 1 ) ... j ) 1 = ( j - 1 ) ) |
747 |
746
|
oveq2d |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - sum_ l e. ( ( 1 + 1 ) ... j ) 1 ) = ( sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - ( j - 1 ) ) ) |
748 |
747
|
oveq2d |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( ( ( d ` 1 ) - 1 ) + ( sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - sum_ l e. ( ( 1 + 1 ) ... j ) 1 ) ) = ( ( ( d ` 1 ) - 1 ) + ( sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - ( j - 1 ) ) ) ) |
749 |
748
|
oveq2d |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( j + ( ( ( d ` 1 ) - 1 ) + ( sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - sum_ l e. ( ( 1 + 1 ) ... j ) 1 ) ) ) = ( j + ( ( ( d ` 1 ) - 1 ) + ( sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - ( j - 1 ) ) ) ) ) |
750 |
704 731
|
fsumcl |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) e. CC ) |
751 |
645 750 743
|
addsubassd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( ( ( ( d ` 1 ) - 1 ) + sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) ) - ( j - 1 ) ) = ( ( ( d ` 1 ) - 1 ) + ( sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - ( j - 1 ) ) ) ) |
752 |
751
|
eqcomd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( ( ( d ` 1 ) - 1 ) + ( sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - ( j - 1 ) ) ) = ( ( ( ( d ` 1 ) - 1 ) + sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) ) - ( j - 1 ) ) ) |
753 |
752
|
oveq2d |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( j + ( ( ( d ` 1 ) - 1 ) + ( sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - ( j - 1 ) ) ) ) = ( j + ( ( ( ( d ` 1 ) - 1 ) + sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) ) - ( j - 1 ) ) ) ) |
754 |
645 750
|
addcld |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( ( ( d ` 1 ) - 1 ) + sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) ) e. CC ) |
755 |
742 754 743
|
addsubassd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( ( j + ( ( ( d ` 1 ) - 1 ) + sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) ) ) - ( j - 1 ) ) = ( j + ( ( ( ( d ` 1 ) - 1 ) + sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) ) - ( j - 1 ) ) ) ) |
756 |
755
|
eqcomd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( j + ( ( ( ( d ` 1 ) - 1 ) + sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) ) - ( j - 1 ) ) ) = ( ( j + ( ( ( d ` 1 ) - 1 ) + sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) ) ) - ( j - 1 ) ) ) |
757 |
742 754 743
|
addsubd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( ( j + ( ( ( d ` 1 ) - 1 ) + sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) ) ) - ( j - 1 ) ) = ( ( j - ( j - 1 ) ) + ( ( ( d ` 1 ) - 1 ) + sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) ) ) ) |
758 |
742 736
|
nncand |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( j - ( j - 1 ) ) = 1 ) |
759 |
|
1zzd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> 1 e. ZZ ) |
760 |
626 625
|
zsubcld |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( j - 1 ) e. ZZ ) |
761 |
632
|
adantr |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... ( j - 1 ) ) ) -> d : ( 1 ... K ) --> ( 1 ... ( N + K ) ) ) |
762 |
|
1zzd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... ( j - 1 ) ) ) -> 1 e. ZZ ) |
763 |
635
|
adantr |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... ( j - 1 ) ) ) -> K e. ZZ ) |
764 |
|
elfzelz |
|- ( l e. ( 1 ... ( j - 1 ) ) -> l e. ZZ ) |
765 |
764
|
adantl |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... ( j - 1 ) ) ) -> l e. ZZ ) |
766 |
765
|
peano2zd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... ( j - 1 ) ) ) -> ( l + 1 ) e. ZZ ) |
767 |
|
1red |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... ( j - 1 ) ) ) -> 1 e. RR ) |
768 |
765
|
zred |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... ( j - 1 ) ) ) -> l e. RR ) |
769 |
768 767
|
readdcld |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... ( j - 1 ) ) ) -> ( l + 1 ) e. RR ) |
770 |
|
elfzle1 |
|- ( l e. ( 1 ... ( j - 1 ) ) -> 1 <_ l ) |
771 |
770
|
adantl |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... ( j - 1 ) ) ) -> 1 <_ l ) |
772 |
768
|
lep1d |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... ( j - 1 ) ) ) -> l <_ ( l + 1 ) ) |
773 |
767 768 769 771 772
|
letrd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... ( j - 1 ) ) ) -> 1 <_ ( l + 1 ) ) |
774 |
584
|
adantr |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... ( j - 1 ) ) ) -> j e. RR ) |
775 |
774 767
|
resubcld |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... ( j - 1 ) ) ) -> ( j - 1 ) e. RR ) |
776 |
589
|
adantr |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... ( j - 1 ) ) ) -> K e. RR ) |
777 |
776 767
|
resubcld |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... ( j - 1 ) ) ) -> ( K - 1 ) e. RR ) |
778 |
|
elfzle2 |
|- ( l e. ( 1 ... ( j - 1 ) ) -> l <_ ( j - 1 ) ) |
779 |
778
|
adantl |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... ( j - 1 ) ) ) -> l <_ ( j - 1 ) ) |
780 |
593
|
adantr |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... ( j - 1 ) ) ) -> j <_ K ) |
781 |
774 776 767 780
|
lesub1dd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... ( j - 1 ) ) ) -> ( j - 1 ) <_ ( K - 1 ) ) |
782 |
768 775 777 779 781
|
letrd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... ( j - 1 ) ) ) -> l <_ ( K - 1 ) ) |
783 |
|
leaddsub |
|- ( ( l e. RR /\ 1 e. RR /\ K e. RR ) -> ( ( l + 1 ) <_ K <-> l <_ ( K - 1 ) ) ) |
784 |
768 767 776 783
|
syl3anc |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... ( j - 1 ) ) ) -> ( ( l + 1 ) <_ K <-> l <_ ( K - 1 ) ) ) |
785 |
782 784
|
mpbird |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... ( j - 1 ) ) ) -> ( l + 1 ) <_ K ) |
786 |
762 763 766 773 785
|
elfzd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... ( j - 1 ) ) ) -> ( l + 1 ) e. ( 1 ... K ) ) |
787 |
761 786
|
ffvelrnd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... ( j - 1 ) ) ) -> ( d ` ( l + 1 ) ) e. ( 1 ... ( N + K ) ) ) |
788 |
|
elfzelz |
|- ( ( d ` ( l + 1 ) ) e. ( 1 ... ( N + K ) ) -> ( d ` ( l + 1 ) ) e. ZZ ) |
789 |
787 788
|
syl |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... ( j - 1 ) ) ) -> ( d ` ( l + 1 ) ) e. ZZ ) |
790 |
584 687
|
resubcld |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( j - 1 ) e. RR ) |
791 |
584
|
lem1d |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( j - 1 ) <_ j ) |
792 |
790 584 589 791 593
|
letrd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( j - 1 ) <_ K ) |
793 |
792
|
adantr |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... ( j - 1 ) ) ) -> ( j - 1 ) <_ K ) |
794 |
768 775 776 779 793
|
letrd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... ( j - 1 ) ) ) -> l <_ K ) |
795 |
762 763 765 771 794
|
elfzd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... ( j - 1 ) ) ) -> l e. ( 1 ... K ) ) |
796 |
761 795
|
ffvelrnd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... ( j - 1 ) ) ) -> ( d ` l ) e. ( 1 ... ( N + K ) ) ) |
797 |
796 654
|
syl |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... ( j - 1 ) ) ) -> ( d ` l ) e. ZZ ) |
798 |
789 797
|
zsubcld |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... ( j - 1 ) ) ) -> ( ( d ` ( l + 1 ) ) - ( d ` l ) ) e. ZZ ) |
799 |
798
|
zcnd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( 1 ... ( j - 1 ) ) ) -> ( ( d ` ( l + 1 ) ) - ( d ` l ) ) e. CC ) |
800 |
|
fvoveq1 |
|- ( l = ( w - 1 ) -> ( d ` ( l + 1 ) ) = ( d ` ( ( w - 1 ) + 1 ) ) ) |
801 |
|
fveq2 |
|- ( l = ( w - 1 ) -> ( d ` l ) = ( d ` ( w - 1 ) ) ) |
802 |
800 801
|
oveq12d |
|- ( l = ( w - 1 ) -> ( ( d ` ( l + 1 ) ) - ( d ` l ) ) = ( ( d ` ( ( w - 1 ) + 1 ) ) - ( d ` ( w - 1 ) ) ) ) |
803 |
759 759 760 799 802
|
fsumshft |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> sum_ l e. ( 1 ... ( j - 1 ) ) ( ( d ` ( l + 1 ) ) - ( d ` l ) ) = sum_ w e. ( ( 1 + 1 ) ... ( ( j - 1 ) + 1 ) ) ( ( d ` ( ( w - 1 ) + 1 ) ) - ( d ` ( w - 1 ) ) ) ) |
804 |
|
oveq1 |
|- ( w = l -> ( w - 1 ) = ( l - 1 ) ) |
805 |
804
|
fvoveq1d |
|- ( w = l -> ( d ` ( ( w - 1 ) + 1 ) ) = ( d ` ( ( l - 1 ) + 1 ) ) ) |
806 |
804
|
fveq2d |
|- ( w = l -> ( d ` ( w - 1 ) ) = ( d ` ( l - 1 ) ) ) |
807 |
805 806
|
oveq12d |
|- ( w = l -> ( ( d ` ( ( w - 1 ) + 1 ) ) - ( d ` ( w - 1 ) ) ) = ( ( d ` ( ( l - 1 ) + 1 ) ) - ( d ` ( l - 1 ) ) ) ) |
808 |
|
nfcv |
|- F/_ l ( ( 1 + 1 ) ... ( ( j - 1 ) + 1 ) ) |
809 |
|
nfcv |
|- F/_ w ( ( 1 + 1 ) ... ( ( j - 1 ) + 1 ) ) |
810 |
|
nfcv |
|- F/_ l ( ( d ` ( ( w - 1 ) + 1 ) ) - ( d ` ( w - 1 ) ) ) |
811 |
|
nfcv |
|- F/_ w ( ( d ` ( ( l - 1 ) + 1 ) ) - ( d ` ( l - 1 ) ) ) |
812 |
807 808 809 810 811
|
cbvsum |
|- sum_ w e. ( ( 1 + 1 ) ... ( ( j - 1 ) + 1 ) ) ( ( d ` ( ( w - 1 ) + 1 ) ) - ( d ` ( w - 1 ) ) ) = sum_ l e. ( ( 1 + 1 ) ... ( ( j - 1 ) + 1 ) ) ( ( d ` ( ( l - 1 ) + 1 ) ) - ( d ` ( l - 1 ) ) ) |
813 |
812
|
a1i |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> sum_ w e. ( ( 1 + 1 ) ... ( ( j - 1 ) + 1 ) ) ( ( d ` ( ( w - 1 ) + 1 ) ) - ( d ` ( w - 1 ) ) ) = sum_ l e. ( ( 1 + 1 ) ... ( ( j - 1 ) + 1 ) ) ( ( d ` ( ( l - 1 ) + 1 ) ) - ( d ` ( l - 1 ) ) ) ) |
814 |
803 813
|
eqtrd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> sum_ l e. ( 1 ... ( j - 1 ) ) ( ( d ` ( l + 1 ) ) - ( d ` l ) ) = sum_ l e. ( ( 1 + 1 ) ... ( ( j - 1 ) + 1 ) ) ( ( d ` ( ( l - 1 ) + 1 ) ) - ( d ` ( l - 1 ) ) ) ) |
815 |
742 736
|
npcand |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( ( j - 1 ) + 1 ) = j ) |
816 |
815
|
oveq2d |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( ( 1 + 1 ) ... ( ( j - 1 ) + 1 ) ) = ( ( 1 + 1 ) ... j ) ) |
817 |
816
|
sumeq1d |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> sum_ l e. ( ( 1 + 1 ) ... ( ( j - 1 ) + 1 ) ) ( ( d ` ( ( l - 1 ) + 1 ) ) - ( d ` ( l - 1 ) ) ) = sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` ( ( l - 1 ) + 1 ) ) - ( d ` ( l - 1 ) ) ) ) |
818 |
692
|
recnd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> l e. CC ) |
819 |
818 732
|
npcand |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> ( ( l - 1 ) + 1 ) = l ) |
820 |
819
|
fveq2d |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> ( d ` ( ( l - 1 ) + 1 ) ) = ( d ` l ) ) |
821 |
820
|
oveq1d |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ l e. ( ( 1 + 1 ) ... j ) ) -> ( ( d ` ( ( l - 1 ) + 1 ) ) - ( d ` ( l - 1 ) ) ) = ( ( d ` l ) - ( d ` ( l - 1 ) ) ) ) |
822 |
821
|
sumeq2dv |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` ( ( l - 1 ) + 1 ) ) - ( d ` ( l - 1 ) ) ) = sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) ) |
823 |
817 822
|
eqtrd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> sum_ l e. ( ( 1 + 1 ) ... ( ( j - 1 ) + 1 ) ) ( ( d ` ( ( l - 1 ) + 1 ) ) - ( d ` ( l - 1 ) ) ) = sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) ) |
824 |
814 823
|
eqtrd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> sum_ l e. ( 1 ... ( j - 1 ) ) ( ( d ` ( l + 1 ) ) - ( d ` l ) ) = sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) ) |
825 |
824
|
eqcomd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) = sum_ l e. ( 1 ... ( j - 1 ) ) ( ( d ` ( l + 1 ) ) - ( d ` l ) ) ) |
826 |
825
|
oveq2d |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( ( ( d ` 1 ) - 1 ) + sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) ) = ( ( ( d ` 1 ) - 1 ) + sum_ l e. ( 1 ... ( j - 1 ) ) ( ( d ` ( l + 1 ) ) - ( d ` l ) ) ) ) |
827 |
758 826
|
oveq12d |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( ( j - ( j - 1 ) ) + ( ( ( d ` 1 ) - 1 ) + sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) ) ) = ( 1 + ( ( ( d ` 1 ) - 1 ) + sum_ l e. ( 1 ... ( j - 1 ) ) ( ( d ` ( l + 1 ) ) - ( d ` l ) ) ) ) ) |
828 |
|
fveq2 |
|- ( r = l -> ( d ` r ) = ( d ` l ) ) |
829 |
|
fveq2 |
|- ( r = ( l + 1 ) -> ( d ` r ) = ( d ` ( l + 1 ) ) ) |
830 |
|
fveq2 |
|- ( r = 1 -> ( d ` r ) = ( d ` 1 ) ) |
831 |
|
fveq2 |
|- ( r = ( ( j - 1 ) + 1 ) -> ( d ` r ) = ( d ` ( ( j - 1 ) + 1 ) ) ) |
832 |
815 629
|
eqeltrd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( ( j - 1 ) + 1 ) e. ( ZZ>= ` 1 ) ) |
833 |
632
|
adantr |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ r e. ( 1 ... ( ( j - 1 ) + 1 ) ) ) -> d : ( 1 ... K ) --> ( 1 ... ( N + K ) ) ) |
834 |
|
1zzd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ r e. ( 1 ... ( ( j - 1 ) + 1 ) ) ) -> 1 e. ZZ ) |
835 |
635
|
adantr |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ r e. ( 1 ... ( ( j - 1 ) + 1 ) ) ) -> K e. ZZ ) |
836 |
|
elfzelz |
|- ( r e. ( 1 ... ( ( j - 1 ) + 1 ) ) -> r e. ZZ ) |
837 |
836
|
adantl |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ r e. ( 1 ... ( ( j - 1 ) + 1 ) ) ) -> r e. ZZ ) |
838 |
|
elfzle1 |
|- ( r e. ( 1 ... ( ( j - 1 ) + 1 ) ) -> 1 <_ r ) |
839 |
838
|
adantl |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ r e. ( 1 ... ( ( j - 1 ) + 1 ) ) ) -> 1 <_ r ) |
840 |
837
|
zred |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ r e. ( 1 ... ( ( j - 1 ) + 1 ) ) ) -> r e. RR ) |
841 |
584
|
adantr |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ r e. ( 1 ... ( ( j - 1 ) + 1 ) ) ) -> j e. RR ) |
842 |
|
1red |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ r e. ( 1 ... ( ( j - 1 ) + 1 ) ) ) -> 1 e. RR ) |
843 |
841 842
|
resubcld |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ r e. ( 1 ... ( ( j - 1 ) + 1 ) ) ) -> ( j - 1 ) e. RR ) |
844 |
843 842
|
readdcld |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ r e. ( 1 ... ( ( j - 1 ) + 1 ) ) ) -> ( ( j - 1 ) + 1 ) e. RR ) |
845 |
589
|
adantr |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ r e. ( 1 ... ( ( j - 1 ) + 1 ) ) ) -> K e. RR ) |
846 |
|
elfzle2 |
|- ( r e. ( 1 ... ( ( j - 1 ) + 1 ) ) -> r <_ ( ( j - 1 ) + 1 ) ) |
847 |
846
|
adantl |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ r e. ( 1 ... ( ( j - 1 ) + 1 ) ) ) -> r <_ ( ( j - 1 ) + 1 ) ) |
848 |
815 593
|
eqbrtrd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( ( j - 1 ) + 1 ) <_ K ) |
849 |
848
|
adantr |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ r e. ( 1 ... ( ( j - 1 ) + 1 ) ) ) -> ( ( j - 1 ) + 1 ) <_ K ) |
850 |
840 844 845 847 849
|
letrd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ r e. ( 1 ... ( ( j - 1 ) + 1 ) ) ) -> r <_ K ) |
851 |
834 835 837 839 850
|
elfzd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ r e. ( 1 ... ( ( j - 1 ) + 1 ) ) ) -> r e. ( 1 ... K ) ) |
852 |
833 851
|
ffvelrnd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ r e. ( 1 ... ( ( j - 1 ) + 1 ) ) ) -> ( d ` r ) e. ( 1 ... ( N + K ) ) ) |
853 |
|
elfzelz |
|- ( ( d ` r ) e. ( 1 ... ( N + K ) ) -> ( d ` r ) e. ZZ ) |
854 |
852 853
|
syl |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ r e. ( 1 ... ( ( j - 1 ) + 1 ) ) ) -> ( d ` r ) e. ZZ ) |
855 |
854
|
zcnd |
|- ( ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) /\ r e. ( 1 ... ( ( j - 1 ) + 1 ) ) ) -> ( d ` r ) e. CC ) |
856 |
828 829 830 831 760 832 855
|
telfsum2 |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> sum_ l e. ( 1 ... ( j - 1 ) ) ( ( d ` ( l + 1 ) ) - ( d ` l ) ) = ( ( d ` ( ( j - 1 ) + 1 ) ) - ( d ` 1 ) ) ) |
857 |
856
|
oveq2d |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( ( ( d ` 1 ) - 1 ) + sum_ l e. ( 1 ... ( j - 1 ) ) ( ( d ` ( l + 1 ) ) - ( d ` l ) ) ) = ( ( ( d ` 1 ) - 1 ) + ( ( d ` ( ( j - 1 ) + 1 ) ) - ( d ` 1 ) ) ) ) |
858 |
857
|
oveq2d |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( 1 + ( ( ( d ` 1 ) - 1 ) + sum_ l e. ( 1 ... ( j - 1 ) ) ( ( d ` ( l + 1 ) ) - ( d ` l ) ) ) ) = ( 1 + ( ( ( d ` 1 ) - 1 ) + ( ( d ` ( ( j - 1 ) + 1 ) ) - ( d ` 1 ) ) ) ) ) |
859 |
815
|
fveq2d |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( d ` ( ( j - 1 ) + 1 ) ) = ( d ` j ) ) |
860 |
632 581
|
ffvelrnd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( d ` j ) e. ( 1 ... ( N + K ) ) ) |
861 |
|
elfzelz |
|- ( ( d ` j ) e. ( 1 ... ( N + K ) ) -> ( d ` j ) e. ZZ ) |
862 |
860 861
|
syl |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( d ` j ) e. ZZ ) |
863 |
859 862
|
eqeltrd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( d ` ( ( j - 1 ) + 1 ) ) e. ZZ ) |
864 |
863
|
zcnd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( d ` ( ( j - 1 ) + 1 ) ) e. CC ) |
865 |
642
|
nnred |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( d ` 1 ) e. RR ) |
866 |
865
|
recnd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( d ` 1 ) e. CC ) |
867 |
864 866
|
subcld |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( ( d ` ( ( j - 1 ) + 1 ) ) - ( d ` 1 ) ) e. CC ) |
868 |
736 645 867
|
addassd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( ( 1 + ( ( d ` 1 ) - 1 ) ) + ( ( d ` ( ( j - 1 ) + 1 ) ) - ( d ` 1 ) ) ) = ( 1 + ( ( ( d ` 1 ) - 1 ) + ( ( d ` ( ( j - 1 ) + 1 ) ) - ( d ` 1 ) ) ) ) ) |
869 |
868
|
eqcomd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( 1 + ( ( ( d ` 1 ) - 1 ) + ( ( d ` ( ( j - 1 ) + 1 ) ) - ( d ` 1 ) ) ) ) = ( ( 1 + ( ( d ` 1 ) - 1 ) ) + ( ( d ` ( ( j - 1 ) + 1 ) ) - ( d ` 1 ) ) ) ) |
870 |
736 866
|
pncan3d |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( 1 + ( ( d ` 1 ) - 1 ) ) = ( d ` 1 ) ) |
871 |
870
|
oveq1d |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( ( 1 + ( ( d ` 1 ) - 1 ) ) + ( ( d ` ( ( j - 1 ) + 1 ) ) - ( d ` 1 ) ) ) = ( ( d ` 1 ) + ( ( d ` ( ( j - 1 ) + 1 ) ) - ( d ` 1 ) ) ) ) |
872 |
866 864
|
pncan3d |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( ( d ` 1 ) + ( ( d ` ( ( j - 1 ) + 1 ) ) - ( d ` 1 ) ) ) = ( d ` ( ( j - 1 ) + 1 ) ) ) |
873 |
872 859
|
eqtrd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( ( d ` 1 ) + ( ( d ` ( ( j - 1 ) + 1 ) ) - ( d ` 1 ) ) ) = ( d ` j ) ) |
874 |
871 873
|
eqtrd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( ( 1 + ( ( d ` 1 ) - 1 ) ) + ( ( d ` ( ( j - 1 ) + 1 ) ) - ( d ` 1 ) ) ) = ( d ` j ) ) |
875 |
869 874
|
eqtrd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( 1 + ( ( ( d ` 1 ) - 1 ) + ( ( d ` ( ( j - 1 ) + 1 ) ) - ( d ` 1 ) ) ) ) = ( d ` j ) ) |
876 |
858 875
|
eqtrd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( 1 + ( ( ( d ` 1 ) - 1 ) + sum_ l e. ( 1 ... ( j - 1 ) ) ( ( d ` ( l + 1 ) ) - ( d ` l ) ) ) ) = ( d ` j ) ) |
877 |
827 876
|
eqtrd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( ( j - ( j - 1 ) ) + ( ( ( d ` 1 ) - 1 ) + sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) ) ) = ( d ` j ) ) |
878 |
757 877
|
eqtrd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( ( j + ( ( ( d ` 1 ) - 1 ) + sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) ) ) - ( j - 1 ) ) = ( d ` j ) ) |
879 |
756 878
|
eqtrd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( j + ( ( ( ( d ` 1 ) - 1 ) + sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) ) - ( j - 1 ) ) ) = ( d ` j ) ) |
880 |
753 879
|
eqtrd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( j + ( ( ( d ` 1 ) - 1 ) + ( sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - ( j - 1 ) ) ) ) = ( d ` j ) ) |
881 |
749 880
|
eqtrd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( j + ( ( ( d ` 1 ) - 1 ) + ( sum_ l e. ( ( 1 + 1 ) ... j ) ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - sum_ l e. ( ( 1 + 1 ) ... j ) 1 ) ) ) = ( d ` j ) ) |
882 |
735 881
|
eqtrd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( j + ( ( ( d ` 1 ) - 1 ) + sum_ l e. ( ( 1 + 1 ) ... j ) ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) ) = ( d ` j ) ) |
883 |
703 882
|
eqtrd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( j + ( ( ( d ` 1 ) - 1 ) + sum_ l e. ( ( 1 + 1 ) ... j ) if ( l = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) ) ) = ( d ` j ) ) |
884 |
686 883
|
eqtrd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( j + sum_ l e. ( 1 ... j ) if ( l = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) ) = ( d ` j ) ) |
885 |
623 884
|
eqtrd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( j + sum_ l e. ( 1 ... j ) if ( l = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( l = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` l ) - ( d ` ( l - 1 ) ) ) - 1 ) ) ) ) = ( d ` j ) ) |
886 |
606 885
|
eqtrd |
|- ( ( ph /\ d e. B /\ j e. ( 1 ... K ) ) -> ( j + sum_ l e. ( 1 ... j ) ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ` l ) ) = ( d ` j ) ) |
887 |
886
|
3expa |
|- ( ( ( ph /\ d e. B ) /\ j e. ( 1 ... K ) ) -> ( j + sum_ l e. ( 1 ... j ) ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ` l ) ) = ( d ` j ) ) |
888 |
887
|
mpteq2dva |
|- ( ( ph /\ d e. B ) -> ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ` l ) ) ) = ( j e. ( 1 ... K ) |-> ( d ` j ) ) ) |
889 |
|
nfcv |
|- F/_ q ( d ` j ) |
890 |
|
nfcv |
|- F/_ j ( d ` q ) |
891 |
|
fveq2 |
|- ( j = q -> ( d ` j ) = ( d ` q ) ) |
892 |
889 890 891
|
cbvmpt |
|- ( j e. ( 1 ... K ) |-> ( d ` j ) ) = ( q e. ( 1 ... K ) |-> ( d ` q ) ) |
893 |
892
|
a1i |
|- ( ( ph /\ d e. B ) -> ( j e. ( 1 ... K ) |-> ( d ` j ) ) = ( q e. ( 1 ... K ) |-> ( d ` q ) ) ) |
894 |
888 893
|
eqtrd |
|- ( ( ph /\ d e. B ) -> ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ` l ) ) ) = ( q e. ( 1 ... K ) |-> ( d ` q ) ) ) |
895 |
560 894
|
eqtrd |
|- ( ( ph /\ d e. B ) -> ( F ` ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( d ` K ) ) , if ( k = 1 , ( ( d ` 1 ) - 1 ) , ( ( ( d ` k ) - ( d ` ( k - 1 ) ) ) - 1 ) ) ) ) ) = ( q e. ( 1 ... K ) |-> ( d ` q ) ) ) |
896 |
33 895
|
eqtrd |
|- ( ( ph /\ d e. B ) -> ( F ` ( G ` d ) ) = ( q e. ( 1 ... K ) |-> ( d ` q ) ) ) |
897 |
56
|
ffnd |
|- ( ( ph /\ d e. B ) -> d Fn ( 1 ... K ) ) |
898 |
|
dffn5 |
|- ( d Fn ( 1 ... K ) <-> d = ( q e. ( 1 ... K ) |-> ( d ` q ) ) ) |
899 |
898
|
biimpi |
|- ( d Fn ( 1 ... K ) -> d = ( q e. ( 1 ... K ) |-> ( d ` q ) ) ) |
900 |
897 899
|
syl |
|- ( ( ph /\ d e. B ) -> d = ( q e. ( 1 ... K ) |-> ( d ` q ) ) ) |
901 |
900
|
eqcomd |
|- ( ( ph /\ d e. B ) -> ( q e. ( 1 ... K ) |-> ( d ` q ) ) = d ) |
902 |
896 901
|
eqtrd |
|- ( ( ph /\ d e. B ) -> ( F ` ( G ` d ) ) = d ) |
903 |
902
|
ralrimiva |
|- ( ph -> A. d e. B ( F ` ( G ` d ) ) = d ) |